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Abstract 
Software systems are becoming inexorably more open, distributed, pervasive, mobile and 

connected. This thesis addresses the problem of how to build adaptive software systems. 

These systems need to reliably achieve system-level goals in volatile environments, where 

the system itself may be built from components of uncertain behaviour, and where the 

requirements for the software system may be changing. This thesis adopts the system-

theoretic concept of ontogenic adaptation from biology, and applies it to software 

architecture. Ontogenic adaptation is the ability of an individual system to maintain its 

organisational integrity by reconfiguring and regulating itself. A number of approaches to 

adaptive software architecture have been recently proposed that, to varying degrees, enable 

limited adaptive behaviour and reconfiguration, but none possess all the properties needed 

for ontogenic adaptation. We introduce a meta-model and framework called Role Oriented 

Adaptive Design (ROAD) that is consistent with the concept of maintaining organisational 

integrity through ontogenic adaptation. 

 The ROAD meta-model defines software applications as networks of functional roles 

which are executed by players (objects, components, services, agents, people, or role-

composites). These flexible organisational structures are adaptive because the relationships 

(contracts) between roles, and the bindings between roles and players, can be regulated and 

reconfigured at run-time. Such flexible organisational role-structures are encapsulated into 

composites each with its own organiser. Because self-managed composites are themselves 

role-players, these composites can be distributed and recursively composed. The organisers 

of the composites form a management system over which requirements and performance 

data pass. Rather than being monolithic constructions, ROAD software applications are 

dynamic, self-managed compositions of loosely-coupled, and potentially, distributed 

entities. 

 The concepts in the ROAD meta-model have been implemented in a programming 

framework which can be extended by the application programmer to create adaptive 

applications. Central to this framework are dynamic contracts. These contracts define the 

role structure, control interactions between the role instances, and measure the performance 

of those interactions. Adaptivity is achieved by monitoring and manipulating these 

contracts, along with the role-player bindings. Contracts have been implemented using the 

mechanism of “association aspects”.  

 The applicability of the ROAD framework to the domain of Service-Oriented 

Computing is demonstrated. The framework is further evaluated in terms of its ability to 

express the concept of ontogenic adaptation and also in terms of the overhead its runtime 

infrastructure imposes on interactions.   
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Part I 
 

Adaptation and 
Organisation



 

 

1  
 
Introduction 

Software systems are becoming inexorably more open, distributed, pervasive, mobile 

and connected. This accelerating trend is being driven by new technologies that take 

advantage of the rapidly increasing power and falling cost of hardware and networking. 

Such systems have to interact with other systems and within environments that are 

becoming increasingly heterogeneous and dynamic. This thesis addresses the problem 

of how to build adaptive software systems that can reliably achieve system-level goals 

in environments that are volatile, where the system itself may be built from components 

of uncertain behaviour, and where the requirements for the software system may be 

changing. In this chapter we introduce this research problem and its context, and 

outline our approach to addressing it. 

1.1. Adaptive software in an uncertain world 
Software systems exist in multi-faceted environments. These environments include the 

computational and network infrastructure and the resources provided by those 

infrastructures. They also include aspects of the real world with which the 

computerised system interacts either by providing or consuming services, or as a 

controller. There are many sources of change and perturbation in these environments to 

which a software system may need to adapt. Distributed software systems rely on 

networks that may have unreliable bandwidth or availability. Mobile systems may have 

variable access to resources. Heterogeneous systems may need to adapt to new 

components that use various technologies. Composed software systems are often 

aggregations of services or black-box components that may be of uncertain behaviour 

or reliability. Inter-organisational systems may use components that are not directly 

controlled or owned by the composite system.  In open software systems, there may be 
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a need to interact with other systems or agents that exhibit a degree of autonomy from 

the composed system. 

 The increasing pervasiveness and integration of software systems within the 

physical world means that such systems also need to cope with changing requirements. 

Whether they are personalised software devices, sensing or control systems, or 

information systems that mirror real-world processes, such software systems often need 

to cope with changes in user requirements or preferences, changes in the context of use, 

or changes in the demands of the operating context.  

 Many types of software system are, therefore, having to cope with simultaneous 

changes in both requirements and environments, and having to balance both these types 

of change. For example, in the domain of pervasive mobile computing a user may want 

to change the device they use (PDA, mobile etc) as they move to a different location. 

The application may also need to respond to various types of user with different 

preferences or permissions; or to different personas of the same user; or to a user with 

changing goals or requirements. Consider a scenario where a user wants to download a 

picture on to their PDA from a server over the Internet. The user will have certain pre-

ferences that need balancing (e.g. speed of download, quality of picture). The PDA also 

has a display of limited resolution. The bandwidth and server capacity may also be 

variable. The application responsible for delivering the picture may therefore have to 

restructure itself by adding a picture compression component to better suit the user’s 

need, the device’s capabilities and the bandwidth available. 

 Given uncertain computing environments such as those described in the above 

scenario, traditional software development paradigms, that assume static computational 

environments in a fixed context of use, are inadequate. What is needed is adaptive 

software that can take account of changing requirements and contexts, and respond 

accordingly.  

1.2. Research problem – an architecture for adaptive 
software 

The aim of this research is to develop an architectural meta-model and framework for 

the construction of software applications that will be adaptive to both changing 

requirements and environments. Emmerich (Emmerich, 2000) suggests that distributed 

architectures need to possess a number of properties. These include scalability, 

openness, heterogeneity, resource sharing and fault tolerance. In distributed systems, it 

is often considered desirable that such non-functional properties be transparent to the 

application programmer (for example, middleware could perform load balancing to 
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achieve performance transparency). In adaptive systems, on the other hand, non-

functional properties may need to be explicitly managed and traded-off against each 

other.  In order to effectively implement adaptive distributed applications, we contend 

there are a number of other properties that are desirable in adaptive system 

architectures.    

• Grounded. The architecture needs to be able to take account of the ‘real-world’. 

It needs to represent more than just logical relationships between or within 

abstract computational entities. Software entities and their relationships are 

always situated in a context which determines many of their non-functional 

attributes: for example, performance, reliability, security, and so on. Adaptive 

software needs to be able to take account of (if not model) this situated context 

by sensing changes, evaluating the effect of those changes and acting on those 

changes.  

• Exogenous. The architecture cannot assume it has access to the internal 

configuration or state of the components that make up the system. Coordination 

of the behaviour, or measurement of non-functional properties, of the 

components must be external or exogenous to those components.  An exogenous 

management structure also maintains a separation of management and functional 

concerns.   

• Self-managed. It is commonly accepted that parts of a complex system should be 

able to be independently described, implemented and deployed in modules 

(Simon, 1969). The complexity of managing the relationships between entities in 

a system increases dramatically as the number of heterogeneous entities increase. 

In order to handle this complexity, management of the system also needs to be 

distributed down to the level of modules rather than globally managed. In other 

words, these modular composites should be self-managed, as much as possible.  

• Recursive. If descriptions of the system at different levels of granularity and 

abstraction are based on the same architectural meta-model, this increases the 

efficacy of that meta-model and greatly increases the comprehensibility of the 

design. For example, one of the strengths of object-oriented methodologies is that 

objects are composed of other objects which are made of other objects, and so on. 

Units of architectural description should be able to be applied at different levels 

of granularity. 

• Practical. The concepts in the architectural meta-model should be as simple as 

possible (and no more). One of the advantages of the object-oriented 

methodology is that it is based on a few powerful concepts (encapsulation, 
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inheritance, polymorphism, etc.) that can be realised in a relatively simple meta-

model (class, object, method, etc.). Likewise, an adaptive architectural model 

should ideally be based on a few powerful concepts that software developers can 

readily comprehend and apply. The architecture also needs to be able to be 

supported by frameworks or tools that make it practical to implement industrial 

scale systems. 

Any adaptive architecture will, of course, need management mechanisms for sensing 

change and adapting to that change. The thesis presents an adaptive software 

architecture, in the form of a meta-model and an application framework, which has the 

above properties.  

1.3. An organisational approach to adaptive software 
One basic approach to building runtime adaptive systems is to construct them of 

loosely coupled elements. These elements are dynamically coordinated and 

reconfigured to meet environmental demands or changing goals. This underlying 

approach is common to autonomic computing, agent systems and dynamic 

architectures, and is the approach adopted in this thesis. 

 This thesis presents a meta-model and framework called Role Oriented Adaptive 

Design (ROAD). The ROAD meta-model is based on the biological concept of 

ontogenic adaptation. Ontogenically adaptable systems can regulate and restructure 

themselves while maintaining their organisational integrity. We have taken a system-

theoretic approach to developing such systems based on a number of principles. These 

principles are the separation of control from process (as in a control system), the 

distribution of control down through a recursive structure, and the radical separation of 

abstract function (a role) from the implementation of that function (a player). Rather 

than being monolithic constructions, ROAD software applications are dynamic 

compositions of distributed, loosely-coupled entities that operate in changing contexts. 

In this sense they resemble complex human organisations or biological systems, more 

than they resemble simple deterministic machines.   

 The ROAD meta-model reflects this organisational approach. The key concepts 

and characteristics of this meta-model are as follows: 

• Software applications are viewed as goal-oriented organisations that attempt to 

remain viable in changing environments.   

• The structure of software organisations comprises a network of functional roles 

associated by contracts. This structure is a runtime entity rather than just a 

design-time construct. 
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• Roles define a purposeful function (fulfil a goal) with respect to the organisation 

as a whole.  

• There is a strict separation of abstract function (role) and process (players). Roles 

are executed by players (components, services, agents, people, or composite 

organisations). 

• Organisational structures are flexible because the relationships between roles 

(contracts), and the relationships between roles and their players, can be changed 

at run-time.  

• These flexible organisational role-structures are encapsulated in a composite that 

is managed by its own organiser. Management includes both (re)configuration 

and regulation of the composite.  

• Because self-managed composites are themselves role players, these composites 

can be distributed and recursively composed. 

• Management is ultimately the management of relationships. Non-functional 

properties can always be viewed as properties of functional relationships 

(properties of an entity are always properties with respect to some other entity / 

organisation). In ROAD, therefore, these properties are always defined in, and 

measured by, contracts. 

The concepts in the ROAD meta-model have been expressed in a programming 

framework which can be extended by the application programmer to create adaptive 

applications. 

1.4. Thesis outline 
This thesis is divided into three parts. Part I is a general discussion of the concepts of 

adaptation and organisation that underlie the ROAD meta-model (Chapter 2), and a 

review of the literature of adaptive architectures in terms of these concepts (Chapter 3). 

Part II describes the Role-Oriented Adaptive Design meta-model. Chapter 4 of Part II 

provides an overview of the meta-model and an expository example. The remaining 

chapters in Part II describe the concepts in the meta-model in detail: role and players 

(Chapter 5); contracts (Chapter 6); and self-managed composites, organisers and the 

management system (Chapter 7).  Part III consists of a description of an 

implementation of the ROAD framework (Chapter 8), a test application built on that 

framework (Chapter 9), a design case study in the domain of service-oriented 

computing (Chapter 10), a discussion of the expressiveness of the ROAD meta-model 

and the efficiency of the framework (Chapter 11), and a conclusion that discusses the 

contribution of the thesis and points to future work (Chapter 12). 
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 Chapter 2 is a discussion of the system-theoretic concepts underpinning ROAD. 

This approach is system-theoretic, in that we are concerned with how software systems 

as a whole adapt to changes and maintain their viability in their environments, rather 

than solely focussing on particular adaptive mechanisms or strategies. We define what 

we mean by adaptation. The focus of this thesis is ontogenic adaptation in designed 

systems. Such systems have three properties: Plastic structure, replaceable elements, 

and regulatory/managerial mechanisms. We then discuss the concept of organisation 

which is central to understanding ontogenic adaptation, then review key literature on 

Cybernetics and General Systems Theory to elucidate the related concepts of control, 

regulation and hierarchy. From these system-theoretic approaches two principles are 

drawn. The first principle is the separation of control from process. The second is the 

distribution of control down through a recursive structure. Our approach follows an 

additional third principle: the radical separation of role (abstract function) from the 

implementation of that function. We then use these concepts to define a taxonomy of 

adaptive systems. This taxonomy shows how the type of adaptive software discussed in 

this thesis fits within the broader context of adaptive systems. 

 Chapter 3 applies the concept of ontogenic adaptation, as discussed in Chapter 2, 

to software systems, and reviews the literature on adaptive software architectures in 

terms of this concept. We set out what properties a software system would require for it 

to be considered ontogenically adaptive in terms of the broad categories of 

reconfiguration, regulation and management. The existing literature on adaptive 

architectures is then examined. In order to analyse this literature, we identify a number 

of distinguishing characteristics of adaptive architectures. After setting the scope of the 

review and briefly discussing related areas of research not covered, a number of 

adaptive architectural frameworks are reviewed in more depth, categorising them 

according to the distinguishing characteristics identified earlier. The chapter concludes 

by presenting a comparative table that summarises the characteristics of the reviewed 

frameworks. 

 Chapter 4 begins Part II of the thesis by discussing the major concepts of the 

ROAD meta-model, and relating these concepts back to the general properties found, to 

a greater or lesser extent, in adaptive architectures. The main ROAD concepts are roles, 

players, contracts, organisers and self-managed composites. We then introduce an 

expository example that will be used to illustrate these concepts in the subsequent 

chapters of Part II.   

 Chapter 5 discusses the characteristics of ROAD organisational roles and players, 

and contrasts ROAD roles with other views of roles found in the literature on software 
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design. In ROAD’s meta-model, functional roles are runtime entities representing 

“positions” in an organisational structure. In an organisation, roles have an independent 

identity and existence from the players who are assigned to them. The radical 

separation of roles from players raises a number of issues that are addressed. These 

issues include support for heterogeneous players (objects, agents, services, user 

interfaces etc.) and players with various levels of autonomy and capability, message 

queuing and routing in a role structure, and the maintenance of domain state during 

reconfiguration. In a ROAD application, roles are stateful interfaces that preserve 

communication states if they have no player attached. Role-players of various 

capabilities (including humans in some circumstances) can be dynamically assigned to 

roles as the demands on the system change, or as the environment in which the system 

operates changes.  

 Chapter 6 examines contracts between roles. In ROAD, contracts are used not 

only to compose and control associations between roles, but are also used to make role-

players ‘accountable’ for their performance. In other words, ROAD contracts not only 

define functional relationships, but also define the non-functional properties of those 

relationships both in terms of requirements (obligations of the parties) and a state-of-

fulfilment of those obligations (performance). Such contracts are a way of monitoring 

and controlling the associations between entities that are loosely coupled. They specify 

the required performance, and monitor and store actual performance of a role-player 

with respect to the organisation. In Chapter 6 we also show how patterns of interaction 

in a contract can be abstracted into, what we call, performative contracts that represent 

the authority relationships between two roles. Performance measurement points that 

correspond to various synchronisation approaches are also defined at this abstract 

performative level. 

 Chapter 7 discusses how self-managed composites can be created from roles, 

players, contracts and organisers. We begin by describing the properties of these 

composites. Issues of message delegation, player containment and whether or not 

composites perform any domain process or maintain state are also discussed. We then 

describe the function of the composite organiser who is responsible for managing the 

composite. The functions of an organiser role are distinguished from that of an 

organiser player.  Organiser roles define how to change the composite, while organiser 

players decide what to change. An example of an organiser-player strategy for 

adaptation within a self-managed composite is described. The focus of the chapter then 

turns to the management system which connects the organisers across composites. This 

management system is distinct from the functional system comprising functional roles 
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and players. Adaptive behaviour across composites is described including the 

propagation of non-functional requirements and performance information. The 

conclusion to the chapter includes a summary model of all the main ROAD concepts 

presented in Part II of the thesis. 

 Chapter 8, the first chapter in Part III of the thesis describes an implementation of 

the ROAD meta-model in the form of a framework that can be extended by the 

application programmer.  We then give an overview of how the concepts, described in 

the previous part of the thesis, map to key abstract classes in the framework. The 

subsequent sections describe in more detail the Java implementation of these key 

ROAD concepts; namely, roles, contracts, self-managed composites and organisers. In 

particular, we focus on a novel use of instantiable aspects called “association-aspects” 

to implement contracts at the performative and functional levels. The chapter concludes 

with a discussion of the work that could be done to further develop the ROAD 

framework, and what tool support is needed by developers to make practical the 

development of adaptive software organisations. 

 Chapter 9 describes the implementation of a test application based on the ROAD 

framework.  The application demonstrates the various capabilities of the ROAD 

framework, shows how the composite is created using roles, players and contracts, and 

shows how the framework prevents unauthorised communication. The application also 

demonstrates the adaptive behaviour that the ROAD framework facilitates by showing 

how the organiser attempts to mitigate underperformance by reconfiguring the 

composite. The chapter concludes by showing how a ROAD application can work with 

heterogeneous players – in this case Java objects and Web services. 

 Chapter 10 presents a case study that highlights the way ROAD can be used to 

create Web service compositions, in particular the mediation between changing 

requirements and the changing provision of services. A number of other modelling 

capabilities of ROAD are also demonstrated including types of abstract performative 

contract suitable to inter-organisational contracts (e.g. buyer-seller contracts as distinct 

from intra-organisational contracts such as supervisor-subordinate, peer-peer, etc.); the 

use of contracts which govern ‘long-lived’ transactions; the ability to represent ‘virtual 

enterprises’; and the representation of performance in terms of non-temporal utility. 

The case study also illustrates the design of composites so that role abstractions in a 

composite are always kept at the one level of abstraction. Roles are not decomposed 

into other roles within a composite. Rather, roles are always played by loosely coupled 

players, some of which may be role composites. Highly adaptive systems can thus be 
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created, because the decomposition (not just the configuration) can always be changed 

at runtime. 

 Chapter 11 evaluates the expressiveness of the ROAD meta-model and the 

performance of the ROAD framework. We first evaluate how well the ROAD meta-

model expresses those qualities necessary in an ontogenically adaptive software system 

as set out in Chapter 3. The chapter then analyses the prototype implementation of the 

ROAD framework in terms of the runtime overhead it imposes. ROAD defines an 

organisational middleware structure through which passes all communication between 

the application’s functional runtime entities. This interposed message-intercepting 

structure creates an overhead compared to, say, the communication between two 

directly communicating objects. The run-time performance overhead of a ROAD 

application therefore needs to be characterised relative to such direct communication. 

We also compare the overhead imposed by ROAD middleware to the overhead 

imposed by the predominant middleware for more open inter-organisational application 

integration, namely Web services. 

 Chapter 12 concludes the thesis with a discussion of its contributions to the field of 

adaptive software architectures, and then outlines the future work that could be done to 

further develop the ROAD approach to developing ontogenically adaptive software.   

 The reader may note that there is no chapter called “Literature Review” in this 

thesis. This is due to the breadth of the topic of the thesis and its eclectic genesis. The 

thesis draws from literature on systems theory, adaptive software architectures, roles, 

and contracts, as well as research on aspect-oriented programming. Although the major 

review of literature is the review of adaptive software architectures in Chapter 3, 

discussion of other literature related to the various concepts and technologies can be 

found in the relevant chapters. 



 

 

2  
 
Adaptive Organisations 

This chapter discusses the concepts that underpin the ROAD (Role Oriented Adaptive 

Design) approach to developing adaptive software systems. This approach is system-

theoretic, in that we are concerned with how software systems as a whole adapt to 

changes and maintain their viability in their environments, rather than solely focussing 

on particular adaptive mechanisms or strategies. The discussion in this chapter focuses 

on adaptive systems in general, and provides a context for the literature review of 

adaptive software systems in Chapter 3.  

 The first section defines what we mean by adaptation. We adopt, from biology, 

the distinction between three fundamental types of adaptation, namely: evolutionary, 

ontogenic and environmental manipulation. The focus of this thesis is ontogenic 

adaptation, and we extend this concept to designed goal-oriented systems.  

 Section 2.2 of this chapter focuses on the concept of organisation which is central 

to understanding ontogenic adaptation in living and artificial systems.  We define what 

we mean by organisation highlighting the difference between emergent natural systems 

and goal-directed designed systems. We then examine some of the key system-theoretic 

literature to eludicate the concepts of control and structure in organisations. In 

particular, Beer’s Viable System Model (VSM) (Beer, 1984; Beer, 1985; Beer, 1979) is 

discussed as a model that draws on these system-theoretic views of control and 

structure. VSM presents a control-theoretic approach to recursively structured adaptive 

systems. In particular, VSM differentiates various types of control. It also shows how 

control can be related to organisational structure, and how structure can be used to 

manage complexity.  
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 While we do not follow the VSM architecture in this thesis, it does illustrate two 

important principles for designed goal-oriented adaptive systems. The first principle is 

the separation of control from process. The second is the distribution of control down 

through a recursive structure. In Section 2.3 we propose a third principle, and one not 

found in VSM, namely the radical separation of role (abstract function) from the 

implementation of that function. This provides a plastic flexible structure between 

loosely-coupled elements that makes adaptation possible.  

 These concepts are then used to define a taxonomy of adaptive systems in Section 

2.4. This taxonomy is presented in order to show how the type of adaptive software we 

discuss in this thesis fits within the broader context of adaptive systems. 

2.1. Adaptation  
Adaptation is a relationship between a system and its environment where change is 

initiated to facilitate the survival of the system (or system type) in that environment. 

This definition, however, does not illuminate a number of important aspects of 

adaptation.  To more fully characterise adaptation in a system the following questions 

need to be answered. 

• What is the goal of adaptation – is the goal just to ensure the survival of the 

system within its environment, or does the system also have to meet first-order1 

goals?   

• What causes the need for change in the system – is it a change in the goals or 

requirements of the system, or is the system responding to environmental 

perturbation?  

• What aspects/qualities/parts in the system are subject to change and what aspects 

remain invariant?   

• What are the limits to adaptation?  Every system, living or designed, exists in an 

environmental context and all adaptation is limited.  Systems are not in 

themselves adaptable – they are adaptable with respect to a set of environmental 

states. Even systems that we regard as highly adaptive (such as humans) are only 

viable within a limited range of environmental conditions (atmospheric 

composition, temperature etc.) and within specific ecology.  

• To what extent can a system cope with unanticipated changes to the environment 

or its goals? In other words, do the requirements and environmental states to 

                                                 
1 Skyttner (2001p80) cites Deutsch’s hierarchy of goal-seeking.  First order goal-seeking is related to 
immediate satisfaction or reward; second order goal-seeking achieves first-order goals through self-
preservation; third order goal-seeking relates to the preservation of the group; and fourth order goal-
seeking preserves the environment or ecosystem.  To be viable in the long-term, systems need to take 
account of all these types of goal. 



Chapter 2   Adaptive Organisations  13 

  

which the system can adapt need to be defined when the system is reified, or can 

the system dynamically adapt to unanticipated states provided certain limits or 

constraints are not violated? Can the system change itself (structural adaptation 

rather than just behavioural adaptation) to cope with unanticipated change? 

• Can the system change the environment? In designed software systems we draw 

a boundary between the system and the environment, and tend to assume the 

environment cannot be changed.  However, all systems effect their environment 

to some degree. Adaptation expresses a relationship between a system and its 

environment. For example, as human beings, it is our ability to modify our 

environment that has made us so adaptable.  

• Is the agency for adaptation internal or external to the system? Artificial systems 

are often classified as adaptable (able to be modified by an external agent) and/or 

adaptive (able to change itself). 

In order to better build adaptive systems we need a more refined understanding of the 

nature of adaptation.  Biological systems have been a source of inspiration for the 

development of adaptive software systems. In biological systems two mechanisms of 

adaptation  are commonly characterised (Maturana and Varela, 1980) — evolutionary 

(phylogenetic) and ontogenic (or ontogenetic) adaptation.  If we define adaptation as 

the compatibility between a system and its environment we can add a third category — 

environmental manipulation.  Each of these mechanisms has parallels in designed 

systems.  These three mechanisms are based respectively on reproduction, self-

production and production.  

2.1.1. Evolutionary adaptation (reproduction) 
Evolutionary (phylogenetic) adaptation is a selective mechanism whereby instances of 

a class of system reproduce themselves with variations. The variants that have a better 

fit with their environment are selected because they can survive and reproduce.  

Evolutionary adaptation is, therefore, the adaptation of a species (phylogeny) rather 

than an individual of that species. In biological systems this variation is random (“blind 

variation”) and environmental conditions determine selection.  In software systems, 

evolutionary adaptation has analogies at both design-time and runtime.  At design time 

the versions of a product throughout the software development life-cycle could be 

regarded as variations. Unlike biological systems, these variations are not “blind”.  

Versions of the software product-line are based on models the designers hold and 

evolve in the iterative development cycle. Versions are tested to ensure they meet 

requirements (i.e. they are well adapted to the nominal environment). On the other 

hand, genetic algorithms (Holland, 1992) use blind variation and selection  at runtime 
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to achieve this type of adaptation. Evolutionary adaptation is based on the reproduction 

of individuals.  

2.1.2. Ontogenic adaptation (self-production) 
Ontogeny is the history of structural transformations of an individual system. 

Ontogenic (or ontogenetic) adaptation is the ability of a system to regulate itself and 

change its structure as it interacts with the environment.  This change of structure is of 

two types.  The first is the change or interchange of the elements within the structure.  

In biological systems an example of this type of change is the death and replacement of 

cells.  In software or hardware systems an analogy would be the replacement of one 

component by another component, where both components share a common interface.  

The second type of change is modification of relationships between the elements that 

make up the system. In animals this plasticity of structure is achieved, in part, by the 

nervous system. The nervous system (including the brain) enables and modulates the 

interactions between various components of the living system by continually modifying 

itself.  This malleability of the nervous system (the individual self-structuring to fit the 

environment) is the basis of cognition, learning and social behaviour (Maturana and 

Varela, 1987).  

 In biological systems, the plasticity of structure that enables ontogenic adaptation 

has arisen through evolutionary adaptation.  In software systems we must design this 

plasticity (indirection) into the system. As with biological systems, there are two types 

of indirection, firstly the ability to interchange elements that fulfil the same function 

within the structure, and secondly the changing of the relationship between those 

elements.  In the context of software systems, we call these two types, respectively, 

indirection of instantiation and indirection of association (Colman and Han, 2005).  

 As well as having (at least some) loosely coupled elements, an ontogenically 

adaptive system must have ways of determining at runtime that indirection (i.e. 

deciding what the structure, and behaviour over that structure, will be), so that the 

system maintains its viability. A viable system2 is one that can continue to survive (and, 

if required, continue to meet its goals) in uncertain and changing environments. 

Maintaining viability may involve the system learning either in a representational or 

non-representational form. Neural networks are examples of systems that exhibit 

ontogenic adaptation through non-representational learning. On the other hand, in the 

                                                 
2 Our use of the term viability derives from the Viable System Model of  Stafford Beer (Beer, 1984) who 
applied concepts of cybernetic control to human organisations.  
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case of systems that hold a reflective representation of themselves, maintaining such 

viability may be the responsibility of a management system. 

 Ontogenic adaptation can be viewed as a form of self-production (autopoiesis3) 

(Maturana and Varela, 1980) — the ability of the system to maintain its organisational 

integrity even through the elements within it may change and the relationships between 

those elements change. 

2.1.3. Environmental manipulation (production) 
There is a third type of adaptation – the ability to change the environmental constraints 

to suit the system.  This type of adaptation is also apparent in biological systems.  

Biological examples include symbiosis; ant pheromone trails to food sources; the 

creation of nests to moderate environmental perturbations; agriculture; and culture.  In 

software engineering the co-evolution of a system and its environment has long been 

recognised.  The design of software systems has been characterised as interactions 

between “system designers” and “environmental designers” (Sykes, 2003).  In software 

systems, the boundary between system and environment is not just a technical issue. 

Where this boundary lies, and whether or not the environment can be changed, is often 

a negotiated socio-technical decision.  As software systems are developed for more 

complex and open software environments, the manipulation of environmental 

constraints may become an important form of adaptation.  An example of such 

environmental alteration is the emergence of social norms in multi-agent societies 

(Zambonelli, Jennings and Wooldridge, 2000). Adaptation through environmental 

manipulation can be thought of as production. 

2.2. Organisations 
Adaptation through evolution, ontogenesis, and environmental manipulation are 

complementary, and in many real world systems occur simultaneously. In this thesis we 

will focus on ontogenic adaptation of software systems. In this section we examine the 

relationship between organisation and ontogenic adaptation.  

2.2.1. Ontogenically adaptive systems 
. We can summarise the general properties of an ontogenically adaptive system as 

follows: 

• Flexibility (plasticity) of structure (indirection of association) 

                                                 
3 Maturana and Varela see the autopoiesis as the defining characteristic of living systems. The systems we 
discuss in this thesis are, of course, not living. This is, in part, because they are not entirely self-producing. 
Artificial systems have designers at some stage in their life-cycle. However, such artificial systems can still 
have ontogenically adaptive properties. 
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• Replaceable elements (indirection of instantiation) 

• Ability to ‘manage’ (regulate and reconfigure) the indirection in the system to 

ensure its organisational integrity and thus its viability in its environment.  

As pointed out above, it is the organisational integrity of an ontogenically adaptive 

system that is invariant in dynamic situations, rather than the elements or structure of 

the system. However, while the concept of indirection is clearly understood in the 

context of software systems, applying the biologically inspired notions such as viability 

and organisational integrity to software systems is a more problematic task. If we are 

to build ontogenically adaptable software that can maintain, at runtime, its 

organisational integrity, we will need to define what organisation is, how it might be 

represented, and how the organisational structure might be manipulated to achieve 

ontogenic adaptation.  

 As software systems become more complex and operate in more open and 

uncertain environments, we argue that it is necessary to model the dynamics of those 

systems at a higher level of abstraction – at an organisational level rather than just a 

structural, functional or process level. For example, biological science describes the 

complex regulatory mechanisms that keep living organisms in a homeostatic 

relationship with their environment (including other organisms). Similarly, 

management theory has much to say about the design of organisational structures in 

human organisations so that these organisations can thrive within their business 

environments, and be more responsive to changing goals (e.g. (Mintzberg, 1983; 

Simon, 1957)).  In this work, we aim to show how software systems can be represented 

at an organisational level of abstraction, so that we can start to reason about software 

organisation and, thus, build viable ontogenically adaptive systems. 

2.2.2. Organisation as metric, process, structure and system 
invariant  

A description of a system’s organisation is a description of the relationships between 

elements in that system.  There are many definitions of organisation. Parunak and 

Brueckner (Parunak and Brueckner, 2003) suggest three aspects of organisation based 

on information entropy, process, and (emergent) structure.  Organisation1 (O1) is a 

measurement of state; that is, the inverse to the amount of entropy in the system based 

on some regularity — spatial, functional or temporal. O2 is a process in which O1 

increases in time, in other words the process that decreases the amount of entropy 

within the system. Finally, O3 is the structure resulting from O2 which can be measured 

with O1. 
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 This definition nicely binds the physical and informational aspects of organisation 

together but it has two shortcomings. Firstly the measure of organisation (O1) is itself a 

state-based metric. A more system-theoretic definition of organisation can be found in 

Maturana and Varela (Maturana and Varela, 1980). In their definition, organisation is 

the set of relationships that maintain the viability of a complex biological system in a 

changing environment. In complex systems these associations can be seen as defining 

the system. For example, in a complex multi-cellular system such as an animal, cells 

are continually dying and being replaced. What stays constant in such biological 

systems is the functional relationships between the roles played by these cells. It is 

these relationships that define a system as a unity, and determine the dynamics of 

interaction and transformations (the ontogenic adaptation) which the unity may 

undergo (Maturana and Varela, 1987). Organisation is what maintains the system as a 

viable entity in a changing environment. 

 The second limitation, for our purposes, of the definition in (Parunak and 

Brueckner, 2003) is that it only addresses emergent structures such as those in natural 

systems. In terms of adaptation, natural systems only need to ensure their survival. On 

the other hand, software systems need to survive but they also are designed to achieve 

goals. The above definition, therefore, needs to be modified to take account of the 

organisation’s purpose. The process (O2) can include activities to deliberately modify 

the structure (O3) to achieve the system’s purpose. In the next sections we examine 

system-theoretic approaches that account for such goal-orientation in adaptive systems.  

2.2.3. System-theoretic approaches to adaptation and 
organisation 

To remain viable in their environment, adaptive systems need to have a goal of 

achieving a stable state with their dynamic environment. Such homeostatic systems 

dynamically self-regulate in order to maintain certain variables within acceptable 

bounds (e.g. the human body regulates its processes in order to keep blood temperature 

constant). Ashby (Ashby, 1956) expresses the interdependence in the dynamics of a 

homeostatic system and its environment in his concept of ultrastability. Ultrastability is 

the ability of a homeostatic system to change its internal organisation or structure in 

response to external conditions. Such stability is achieved through control feedback 

loops. The existence of such regulatory mechanisms is an essential feature of all 

adaptive systems, and one of the fundamental concepts in cybernetics. 

 Cybernetics is the attempt to develop a “science of control and communication, in 

the animal and the machine” (Wiener, 1961). In this sense cybernetics is a 

generalisation and extension of control theory. Key to the cybernetic view of control is 
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the separation of a controller from the process being controlled, as illustrated in Figure 

2-3 below. The process interacts directly with the environment, while information on 

the state of the environment and the process flows to the controller to form control 

loops. These control loops can either be feedback or feed-forward. Feedback (or closed-

loop) control adjusts the process based on the measurement of some controlled variable 

that is affected by the process in the environment.  A simple feedback control loop is 

illustrated in Figure 2-1 below (adapted from (Shaw, 1995)). The desired state of the 

system (set point goal) is compared to the actual state, as measured by some control 

variable. A manipulated variable is then altered to decrease the difference between the 

desired and actual states. Changes to which a system must adapt are illustrated by block 

arrows. 

 
Figure 2-1: Feedback Control 

 In feed-forward control, on the other hand, the controller must anticipate the 

effects on the controlled variable resulting from changes to the manipulated variable, 

given various environmental states. To do this the controller must maintain a dynamic 

model of the controlled system in its environment. In general, a controller must be able 

to respond appropriately to all possible states of the environment, that is the variety of 

the environment.  Ashby’s Law of Requisite Variety states that to regulate a system, the 

controller must be capable of generating at least as much variety as that exhibited by 

the system being regulated. 

 Like cybernetics, General Systems Theory (GST) (Bertalanffy, 1968; Skyttner, 

2001), attempts to distil general principles of biological and social systems. Such 

systems are viewed as a “system of systems” with each subsystem performing a 

function in the enclosing system. Living organisms have evolved from homeostatic 

couplings of self-regulating systems that create composed systems at a higher level. 

These systems in turn compose other systems of ever increasing complexity.  Systems 

theorists view this hierarchical composition as an essential feature of all complex 

adaptive systems. A number of hierarchical system models have been developed (see 

Skyttner, 2001)  that attempt to extend the principles to complex man-made systems. 
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These include the Viable System Model (Beer, 1985) that is discussed in the next 

section.    

 
 

 
Figure 2-2: A multilevel “system of systems” hierarchy 

 
 Heylighen & Joslyn (2001) nicely summarise this hierarchy of systems from a 

cybernetic perspective: “A control loop will reduce the variety of perturbations, but it 

will in general not be able to eliminate all variation. Adding a control loop on top of the 

original loop may eliminate the residual variety, but if that is not sufficient, another 

hierarchical level may be needed. The required number of levels therefore depends on 

the regulatory ability of the individual control loops: the weaker that ability, the more 

hierarchy is needed. This is Aulin's law of requisite hierarchy”. A similar point has 

been made by Herbert Simon in his study of human organisations (Simon, 1957); 

namely, that hierarchy in artificial organisations compensates for the “limited 

rationality” of the members of that organisation4. In his comparison of the natural and 

artificial worlds Simon (Simon, 1969) sees quasi-autonomy from the outer environment 

as an essential characteristic of complex systems. Complex systems are aggregations of 

“stable intermediate forms”. Designed goal-oriented systems can also be viewed as a 

hierarchy of control where successively lower levels of the system operationalise the 

goals of the next higher level (e.g. a bureaucracy with various levels of management). 

                                                 
4 Agre (1995) notes that Simon (1957) outlined many ways in which social organisations compensate for 
the "limited rationality" of their members. “The orchestration of numerous workers within a larger 
organization, Simon argued, compensates for the individual's limited capacity for work. Likewise, the 
division of labor and the assignment of specialized tasks to individuals compensates for their limited 
abilities to learn new tasks. The flow of structured information through the organization compensates for 
their limited knowledge, and the precise formats of that organization, together with the precise definition of 
individual tasks, compensate for individuals' limited abilities to absorb information and apply it usefully in 
making decisions. Finally, Simon believed that the hierarchical structure of bureaucracies compensates for 
individuals' limited abilities to adopt their own values and goals.” 
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In these goal-directed systems, control is distributed down through the structure to 

quasi-autonomous subsystems. 

 In living systems the boundaries of these “intermediate forms” are internally 

determined (Maturana and Varela, 1980). The cell membrane is the archetypal example 

of such a boundary. As we have already discussed in Section 2.1.3, in artificial systems 

the boundaries of the system is often arbitrarily determined rather than internally 

determined. However, even artificial organisations typically have a well defined 

interface or ‘membrane’ which regulates its interactions with the environment.  

2.2.4. The Viable System Model – an example of combining 
control and structure in a goal-driven system 

Other authors such as Beer (Beer, 1979; Beer, 1984), have applied cybernetic principles 

to goal-driven business organisations and bureaucracies. Such intentionally designed 

adaptive systems may need to adapt to changes in the goals of the system, as well as 

adapting to changes in itself or its environment. To do this they need to regulate their 

internal interactions and their interactions with their environment. Beer’s Viable 

Systems Model (VSM) is a management theory but it has also been applied to many 

forms of biological and social organisation. VSM combines the cybernetic concepts of 

balancing variety, with a General Systems Theory (GST) “system of systems” approach 

to creating a hierarchy of self-regulating “viable” systems. 

 The strength of VSM is that it differentiates a number of types of management 

control, and provides a consistent framework of how these types interact within and 

between viable systems.  All viable systems have “five necessary and sufficient 

subsystems interactively involved in any organism or organisation that is capable of 

maintaining its identity independently of other such organisms within a shared 

environment.” (Beer, 1984). A viable system is separated into a System ONE5  and 

Control Systems (TWO-FIVE) as illustrated in Figure 2-3 below.  This distinction 

between process and control is at the heart of Beer’s cybernetic approach to 

organisation.  In a viable system, the variety (complexity) of the control system and the 

process, and the environment, must be kept in balance (homeostatic equilibrium) 

through amplification and attenuation of complexity in order to preserve Ashby’s Law 

of Requisite Variety.   

                                                 
5 Beer’s use of the word “System” is somewhat confusing here. CAPITAL letters are used to denote these 
VSM systems. Only System ONE is a system in the sense of an independent entity. Systems TWO to FIVE 
can be thought of as management subsystems that interact with each other, and with other subsystems of 
the same type in other System ONEs. For example, the Planning and Adaptation subsystems (System 
FOUR) in nested systems have connections to each other.  
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Figure 2-3:  Separation of Control from Process 

 System ONE (S1) in VSM terminology is the process or sub-system being 

controlled. This process enacts the primary function or purpose, and is itself a 

composite of viable systems. The management systems that make up the controller are 

as follows:  

• System TWO (S2) – Regulation, coordination (e.g. production relations). S2 

damps the oscillations between S1 and its environment. 

• System THREE (S3) – Command, control (e.g. line management) and auditing 

functions 

• System FOUR (S4) – Adaptation, planning, strategy, simulation. To make the 

system adaptive to non-routine change, S4 needs to be aware of the environment, 

and dynamically adapt to unanticipated changes in the environment.  To do this it 

needs a model of the system and its environment 

• System FIVE (S5) – Supervisory control that defines goals and policies for the 

system, and gives identity to the system 

These management sub-systems exemplify the hierarchy of control loops discussed in 

the previous section. The relationship between these VSM systems is illustrated in 

Figure 2-4 below. Figure 2-4 also illustrates that there may be more than one S1 (in the 

diagram Systems 1A and 1B) which are coordinated hierarchically through S3. As well 

as interconnected subsystems existing at the same level, all viable systems are 

recursive; any viable system contains, and is contained in, a viable system. 
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Figure 2-4: A Schema of a Viable System (adapted from Herring (2002)) 

 In summary, Beer’s Viable System Model combines the control-theoretic 

perspective of cybernetics, with GST’s view of complex systems as a recursive 

hierarchy of systems. VSM recognises the importance of different types of control in 

viable systems, namely regulatory, operational, adaptive and supervisory control. These 

nested control loops attempt to ensure that the system stays in a stable state in the face 

of environmental perturbation and shifting goals. VSM requires the differentiation and 

implementation of these various control mechanisms. The hierarchical nature of VSM 

means that these control mechanisms are applied at all levels of the system. By 

localising the management to the appropriate level, VSM provides a framework for 

controlling complexity, by limiting the amount of variety with which any one controller 

has to cope.   

 However, creating an ontogenically adaptive system by separating control from 

process (as in VSM), poses some challenges. Controllers must maintain a model of the 

process (or at least those parts that need to be controlled and adapted). This model must 

be valid and be kept updated.  In a complex system, this self-model can add 

considerable complexity to the system assuming a valid model can be defined at all6. 

While cybernetics, GST and VSM in particular provide insights into the nature of 

hierarchy and control in complex adaptive systems, the very generality of these 

                                                 
6 On the other hand, self-organising systems that evolve adaptive strategies through evolution (CAS 
systems such as ant colonies) do not require a separation of control and process and do not have to 
maintain explicit models.  While this manages the demon of complexity, evolutionary adapted systems are 
inherently brittle, do not have first-order goals, and are not amenable to supervisory control.  
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approaches is also their shortcoming7. There is little evidence they have had an impact, 

as yet, on informing the design of real software systems although preliminary attempts 

have been made in applying VSM to software design (Herring, 2002; Cai, Cangussu, 

DeCarlo et al., 2004). Herring’s extension of VSM to software systems is discussed in 

the next chapter. Although the VSM approach is a promising approach for creating 

adaptive systems control and recursive composition, its quest for generality blurs a 

fundamental distinction between naturally evolved and intentionally designed systems. 

In designed systems we can radically separate the teleological function (role) of a 

system from the implementation of the system. 

2.3. Role-based organisations  
In addition to the system-theoretic principles described above (namely, the separation 

of process and control, and the distribution of control through a recursive structure) this 

thesis introduces a third principle for goal-oriented ontogenically adaptive systems: the 

separation of organisational roles from the players that execute those roles. A role 

represents the abstract function8 of an entity within an enclosing system. In natural 

systems this abstract function defines a teleonomical ‘purpose’ that is ascribed by the 

observer (e.g. “the heart’s function is to circulate blood around the body”). In designed 

systems, on the other hand, the function of the system/subsystem is a teleological 

purpose that initially exists in the mind of the designer. The designer can envisage the 

role of the system/subsystem without specifying how that system will be implemented. 

This separation of abstract definition and implementation is commonplace in software 

systems (e.g. interface of an object versus the implementation of the object) and in 

human organisations (e.g. a job position is filled by an employee). 

 In designed systems organisational descriptions are means-end functional 

descriptions and are at a higher level of abstraction than perspectives based solely on 

descriptions of either structure or process. For example, in object-oriented design these 

structural and process perspectives are captured, respectively, in class and collaboration 

diagrams. Neither of these representations captures the purpose of the entities 

                                                 
7 We might speculate that the messy real world does not conform to the discrete states required by 
cybernetics. In particular there is a disjunction between the discrete states and control variables we can 
define in artificial systems, and the complex interdependencies of the analogue real world. Ignoring the 
challenges imposed by this chasm has led to exaggerated claims and subsequent lack of outcomes from 
cybernetics and GST.  By confusing information-flow with structural-coupling (Maturana and Varela, 
1987), more extreme expressions of “second order” cybernetics and Information Theory (Shannon and 
Weaver, 1949) have conflated the representation of the system with the system itself.   
8 The word function is highly ambiguous.  Nagel (1961 p256) lists six distinct usages of the word.  We use 
the word here in its biological sense, i.e. a functional explanation explains the behaviour of a system in 
terms of its purpose or Aristotelian end-cause.  Such explanations are common in physiology, biology and 
the social sciences. The word function as commonly used in mathematics and computing, meaning a 
mapping or transformation, lacks this teleological aspect. 
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represented. The concept of a role, on the other hand, does capture the purpose of the 

entity. The shortcoming of many software descriptions is that they reduce the 

description of organisation to just the topological structure or to just the 

process/behaviour. A complete organisational description would need to indicate how 

goals are transmitted through the system; how the entities are coordinated to avoid 

performing extraneous or mutually destructive activity; how the system changes in 

response to changing goals and environmental perturbations; and how the system 

maintains its organisational viability.  

2.3.1. Organisational structures 
A role within an organisation satisfies responsibilities to the system as a whole. Roles 

are the nodes of designed organisational structures. This view of organisation has 

much in common with the conception of human organisations (e.g. bureaucracies) 

where people fill positions (roles) within an organisational structure. An organisational 

structure can be described separately from the players who perform those roles. In our 

approach we distinguish between functional roles that fulfil some domain function (at 

the process level S1 in VSM terms), and management (“organiser”) roles that regulate 

and adapt the system (S2-S5 in VSM terms). We will discuss roles in more depth in 

Chapter 5.  

 As defined above, ontogenic adaptation is the ability of a system to change its 

structure as it interacts with the environment. The separation of roles from their players 

provides one degree of freedom in a role-based organisation, which we call indirection 

of instantiation. Another degree of freedom in role-based organisations is the ability to 

alter the relationship between roles in that organisation. Altering these associations 

changes the organisational structure itself. We call this flexibility indirection of 

association (Colman and Han, 2005). These two types of indirection are illustrated in 

Figure 2-5 below. 

 

 
Figure 2-5: Two dimensions of indirection in adaptive role-based organisations. 
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 The network of associations between roles forms an organisational structure. In 

ROAD, these associations are created using contracts. ROAD contracts are discussed in 

Chapter 6. 

2.3.2. Management of flexible role-based structures 
The design of organisations involves the division of function into roles (Mintzberg, 

1983). However, while this near-decomposability (Simon, 1969) of function in goal-

oriented systems  may provide us with an organisational structure, it does not tell us 

how that structure is coordinated or managed. In a live system any indirection must be 

determined before or during runtime. An adaptive composite system needs to manage 

its indirection. In this thesis we follow the approach of VSM and treat 

control/coordination/management as a separate subsystem(s) from the functional 

system (System ONE in VSM terms). This coordination-system can be described and 

controlled independently from the functional subsystems that interact directly with the 

application domain. This approach is analogous to the coordination-systems that exist 

both in living things and in man-made organisations. In the realm of biology, the 

autonomic nervous system can be viewed as a system that, in part, coordinates the 

respiratory, circulatory, and digestive systems. Similarly, the management structure or 

financial system in a manufacturing business can also be described at a separate level of 

abstraction from the functional processes that transform labour and material into 

products.  

 This management involves both the ontogenic configuration (composition or 

reconfiguration9) of the system, and the regulation of interactions over the composed 

structure. To configure the structure the management system needs to be able to 

dynamically create bindings between its loosely coupled roles and players on both the 

above dimensions of indirection in response to changing demands and the changing 

environment. To regulate the performance of the composed structure, the management 

system needs to maintain some form of representation of the requirements and current 

state of the underlying functional system. In cybernetic terms, these are control 

variables as in Figure 2-1 above. These models will vary depending on the variables 

that need to be controlled in order to maintain the system’s viability in its environment. 

A biological example of a controlled variable is the level of oxygen supply to the cells. 

In a business, the variable might be the amount of funds in the bank. In computerised 

systems, such control variables could be derived from utility functions that measure 

                                                 
9 We use the word configuration to include both the concept of composition from scratch and the 
reconfiguration of an existing structure. 
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computational or communication resources; or variables in the environment with which 

the system interacts. Management of software role structures is discussed in Chapter 7. 

2.4. Summary - a taxonomy of adaptation in systems 
We can summarise the above discussion by presenting a taxonomy of adaptation in 

systems. There a many forms of adaptation in systems, and in this thesis we only 

address a subset of those forms. In Figure 2-6 below, the boxes in bold represent the 

focus of this thesis. 

  

 
Figure 2-6: Taxonomy of adaptation in systems 

 
 Reading from the top of the taxonomy in Figure 2-6, the quality of adaptability in 

a system is the maintenance of a fit between the system and its environment. Fit means 

the ability of the system to survive or remain viable within its environment. There are 

three classes of adaptation: evolutionary, ontogenic and environmental manipulation. 

These classes alter, respectively, the system type, the individual system and the 

Adaptation 
-maintaining fit between a system 

and its environment 

Evolutionary adaptation 
- evolution of a class of 

systems through 
reproduction  

Ontogenic adaptation 
 - change to a single system 

through restructuring -  
self-production 

Representational 
design 

Non-representational 
emergent structure 

Fit achieved through 

e.g. genetic algorithms 

e.g. neural nets 

Process-centric / 
algorithmic 

e.g. generic 
programming 

not usually desirable in 
software systems although 

defining the system boundary 
is often problematic 

Environmental manipulation 
- system changes the 

environment rather than itself 
production 

Organisational role-
based paradigm 

This is our focus 

Component 
based 

Design-time 
adaptability only 

Run-time 
adaptive control  

Structure-centric / 
dynamic architectures 

First order goal-oriented 
systems 

Systems focused on survival 
or higher order goals 

e.g. generic middleware 

Chapter 3 



Chapter 2   Adaptive Organisations  27 

  

system’s environment. In this thesis we are concerned with ontogenic adaptation – the 

restructuring of the individual system.  

 Systems that exhibit ontogenic adaptation can be further divided between those 

that are only focused on survival, and those that also need to meet first-order goals, i.e. 

that are teleological. Natural systems are typically thought of as being focused on 

survival, whereas artificial systems, such as software systems, are designed to maintain 

or achieve first-order goals. 

 Goal-orientation in ontogenic systems can be the emergent behaviour that is a 

result of processes such as reinforcement learning, or can be a result of the deliberative 

design of structures that the meet those goals. In the former case the structure of the 

organisation is emergent (Holland, 1998). In the software domain, emergent structure is 

typified by neural networks and swarm intelligence. While such systems, such as ant-

colony simulations, can be trained or tweaked to achieve particular goals in 

environments with limited dynamic variation, they tend to be focused on solving 

particular classes of problem (e.g. pattern recognition, search algorithms), and are not 

adaptable to changing goals10. On the other hand, this thesis is concerned with systems 

whose structures are deliberately designed to facilitate the operationalisation of first-

order goals. 

 As such the approach here is structure/architecture centric. This is in contrast to 

algorithm-centric approaches such as the Demeter method (Lieberherr, 1996) which 

attempts to achieve adaptivity by decoupling the details of a data structure from the 

operations on those structures. In the Demeter method, executable programs are 

customised from high-level ‘adaptive’ programs. These generic programs are linked to 

detailed data structures via ‘class dictionary graphs’. 

 A further classification that needs to be made is the time that adaptation occurs 

during the development process of the system. As pointed out above, a distinction is 

often made between adaptable software that is easily modifiable at design time, and 

adaptive software that can modify itself at run-time (Herring, 2002). In software terms, 

this distinction between adaptable and adaptive is rather crude. McKinley, Sadjadi et al. 

(2004) provide a more nuanced classification. Composition, a type of adaptive 

operation, can occur at development, compile, link, load and run times. The degree of 

adaptability in software systems is classified as hardwired, customisable, configurable, 

tunable and mutable, depending on the time when composition occurs, and whether the 

                                                 
10 Fogel (1995 pp14-15) points out that “genetically hard-coded behaviour is inherently brittle”, that is 
unable to adapt to unexpected perturbations in the environment.  He cites the example of hunting wasps 
inability to adapt to the smallest changes in the environment that change the preconditions for a behaviour. 
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composition is static or dynamic. In this work we will refer to software systems as 

adaptive if they can change themselves at runtime without recompilation. In particular, 

we are interested in software architectures that implement some form of managed 

control as suggested by (Shaw, 1995) and have the ability to reconfigure themselves. 

There have been a number of attempts to develop such adaptive architectures. The next 

chapter reviews these approaches. 

 The final distinction we make in our taxonomy is between runtime adaptive 

architectures that are based on role-based organisational concepts, as discussed in the 

previous sections of this chapter, and those architectures in which components are the 

structural nodes. This is what distinguishes our approach from other architectures 

surveyed in the next chapter.  

 To conclude, we can characterise the focus of this thesis in terms of the questions 

on the nature of adaptation which we posed at the beginning of this chapter. Thus, we 

are concerned with ontogenically adaptive systems that can adapt at runtime to changes 

in their environment and to changes in their goals and requirements. These systems can 

adapt to changes by dynamically altering their structure, and by regulating the 

behaviour over that structure. In system-theoretic terms, we present a framework for 

building ontogenically adaptive systems with the following properties: 

• A flexible structure based on the radical separation of role from role players. This 

provides two levels of indirection: indirection of association between roles, and 

indirection of instantiation between roles and players. 

• The dynamic management of these indirections within a composite through 

configuration and regulation. This management is based on the separation of 

control from process, and requires the runtime monitoring of the system.  

•  The distribution of management control down through the system. The system is 

recursively composed self-managing composites that have well-defined 

boundaries. The processes between composites are regulated by a management 

system. This management system is distinct from the functional system, and it is 

these management processes that maintain the organisation of the system. 

 
 



 

 

3  
 
Adaptive Software Architectures 

The previous chapter described the characteristics of ontogenically adaptive systems, 

and placed ontogenic adaptation in the context of adaptation in general. Ontogenically 

adaptive systems maintain their organisational viability by dynamically altering their 

structure (configuration), changing their components, and regulating the behaviour over 

that structure. To recap our formulation: 

Ontogenic Adaptation = Structural Plasticity + Component Interchange + Organisational 
Regulation 

In this chapter’s literature review, we use the concepts presented in the previous chapter 

to analyse and classify adaptive software architecture frameworks. Software 

architecture is taken to mean a high-level view of a software system seen as a 

configuration of components1 and connectors (Garlan and Shaw, 1993). Connectors 

between the ports or interfaces of components define the permissible behaviours that 

can occur between components. In the context of software architecture, our definition 

of ontogenic adaptation above can be rephrased as 

Ontogenically adaptive architecture = Dynamic structure + Management  

where management activities monitor the system, reconfigure the structure and regulate 

the behaviour over that structure. 

                                                 
1 The word component is used very generally here to mean any encapsulated software entity that has 
behaviour described by an interface. Components in this sense could include objects, components (as per 
(Szyperski, 1997)), agents, services and so on.  While some Architectural Description Languages (ADLs) 
such as Darwin (Magee and Kramer, 1996) treat connectors as components, here components are taken to 
be the nodes being connected. 
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 In this chapter we will briefly examine the literature on dynamic architectures that 

can replace their components (component interchange or indirection of instantiation) 

and change the relationships between those components (structural plasticity or 

indirection of association). Having a representation of a flexible, dynamically 

configurable structure is a necessary, but not a sufficient, condition for an adaptive 

architectural system. Any adaptive architecture must show how such indirection of its 

flexible structure is managed. In 1995 Shaw proposed that, in some types of 

application, an architectural idiom based on control theory is appropriate (Shaw, 1995). 

Since then many approaches have been proposed that develop ways to control or 

manage components. While not all management approaches necessarily incorporate 

control-theoretic notions such as control variables, feedback control, etc., they do 

separate a controller or manager from the process being controlled. We will examine in 

more detail architectural frameworks that provide ways to manage indirection in the 

structure. Such architectural frameworks describe generalised configurations of types of 

component that perform systemic functions at a management level of abstraction  

 Having a dynamic architecture with some management capability does not, of 

course, guarantee that the software system itself will be ontogenically viable, i.e. that it 

will be able to survive and continue to meet its goals by maintaining its organisational 

integrity. An effective management regime is also needed. In the literature review that 

follows later in this chapter, we will survey a range of recent work on adaptive software 

architecture. In this range there are many variations in both architectural structure and 

management regimes.  

 This chapter is structured as follows. The next section examines some general 

requirements for ontogenic adaptation in software. Section 3.2 distinguishes between 

two broad approaches to developing adaptive software, namely, those approaches that 

focus on the structure of the architecture, and those approaches concerned with 

measuring the quality-of-service (QoS) performance2. The third section identifies a 

number of distinguishing characteristics in the adaptive architectural frameworks we 

review. Section 3.4 discusses and justifies the scope of the literature review, and briefly 

discusses the many related areas that are not covered. We then review a number of 

these frameworks, categorising them according to the distinguishing characteristics 

listed in the preceding section. We conclude the chapter by presenting a comparative 

table that summarises the characteristics of the reviewed frameworks. 

                                                 
2 We use the word performance in this thesis in a very general sense, i.e. the actual level of fulfilment of 
any ‘non-functional’ requirement. 
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3.1. Requirements for ontogenic adaptation in software 
architectures 

In the domain of software systems, much research has been aimed at creating systems 

that can restructure themselves at an architectural level of abstraction – i.e. restructure 

the relatively course-grained components and connectors that constitute the composite 

system. In ontogenic adaptation three types of change can be identified. Functional 

reconfiguration we define as the alteration of the types of functional relationship 

between entities in the system. Non-functional reconfiguration involves restructuring, 

but no new types of functional relationship are defined. Regulation of a system changes 

the characteristics of existing relationships in the system so it can maintain its viability 

and continue to meet its goals. We can distinguish different operations involved in 

these types of change as applied to software architecture.  Functional reconfiguration 

involves one or more of the following operations: 

• Addition of a new type of component that has a new functional relationship or 

interface3 with the system. 

• Removal of a component so that there are no longer components of that type and 

association in the composite. 

• A change in the types of relationship between components 

Non-functional reconfiguration involves one or more of the following restructuring 

operations that change the instances of components of a given type, or that effect the 

multiplicity of relationships between types: 

• Replacement of an instance of a component with another instance that fulfils the 

same function (implements the same interface). 

• Replacement of an instance of a connector with another instance that connects 

components on the same interfaces (ports).  

• Addition of a duplicate component (and associated connectors) that conforms to 

an existing type functional relationship in the composite  

• Removal of a duplicate component, provided there remain component(s) that 

share the same relationship type. In other words the components involved 

duplicate the same interface and perform the same function with respect to the 

composite (for example in parallel processing). 

Regulation that does not change the type of function involves: 

                                                 
3 Interface is used here in the sense of required and provided interfaces of a component that define the 
functional relationships. The concept of an interface can be extended to a “rich” interface that defines the 
non-functional aspects of a relationship.  
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• Altering the parameter(s) of existing components thus regulating the function of 

components. 

• Altering the parameter(s) of existing relationships thus regulating the interactions 

/ connections between components. 

As well as a flexible and dynamic structure that permits the above operations these 

operations need to be controlled and managed. To achieve effective adaptation, the 

manager of the system or composite must have the following properties: 

• A representation of its composite’s structure. If a manager/controller of the 

system is to reconfigure it, the manager must hold a representation of its 

structure, and be able to sense the actual behaviour over that structure. In a self-

adaptive system, this manager is part of the system. The system may also need 

the ability to reason about the representation of the structure to determine if 

structure is well-formed, and if it will produce the desired behaviour. 

• A means for reconfiguring and regulating the structure. The manager must have 

functional and non-functional operations, as describe above, for manipulating the 

structure including the ability to create connections and bind entities to the 

system. The manager needs to decide how to fix (determine) any indirection 

created by the flexible structure. (Given its ability to create structure, the 

manager may also have the ability to create a system from static descriptions.) 

• When a change in the system, requirements or environment results in the system 

no longer meeting its goals, the system needs to know that reconfiguration or 

regulation is necessary. 

• Once the need for reconfiguration is established, the system needs to know what 

alternative configuration(s) can better meet those goals, and how to safely 

transition the system to the better configuration. There may also need to be 

higher levels of control regulation to ensure against unwanted instability resulting 

from the change process.  

3.2. Approaches to representing adaptive architectures 
Research efforts in adaptive software architecture address one or more of the above 

properties of reconfigurable systems. Before reviewing the current literature on 

adaptive architectural frameworks later in this chapter, we will first distinguish two 

complementary categories of approach to defining dynamic architectures that allow the 

structure and behaviour of the system to be reasoned about4. As illustrated in Figure 3-1 

                                                 
4 There are many ways the dynamisms of a software architecture can be classified. In his survey Bradbury 
(Bradbury, 2004) lists eleven definitions of dynamic change that have been widely cited. 
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below, the first category is primarily concerned with structure, and making sure that the 

dynamic structure is well-formed. Structure is the concern of configuration 

management activities. The second category concentrates on the measurement of the 

qualities of interactions over a structure. Controlling the quality of interactions is the 

concern of regulatory management activities. These categories are not mutually 

exclusive but, rather, represent different dominant themes for describing frameworks. 

As shown in Figure 3-1, these modes of description can be further classified according 

to the mechanisms for achieving configuration and/or regulation. Some of the 

frameworks we discuss, such as contract-oriented frameworks, can be seen as a mix of 

structure and quality-centric descriptions. We discuss these categories in more detail 

below. 

 

 
Figure 3-1: Representing dynamic architectures 

3.2.1. Structure-centric descriptions 
A number of Architecture Description Languages (ADLs), such as Dynamic Wright 

(Allen, Douence and Garlan, 1998) and Darwin (Magee and Kramer, 1996), attempt to 

represent architectures with a dynamic structure.  Approaches that are primarily 

concerned with functional change are largely formal. They are motivated both by the 

need to compose functionally well-formed systems, and the need to express the 

dynamic transformation of the structure.  Bradbury (2004) surveys a number of formal 

dynamic architecture languages and evaluates the extent to which the formalisms 

support the specification of self-managing systems. The formalisms include graph-

based, logic, process algebra and other approaches. Each approach has various 

strengths. Bradbury examines the relative expressiveness of the languages in terms of 

component and connector addition/removal to/from the structure.  Formalisms also 

vary according to whether they emphasise the behaviour of the system (as, say, 
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naturally expressed in a process algebra) as opposed to an emphasis on the structure of 

the components and connectors (as, say, naturally expressed in a graph grammar). 

 Dynamic architectures can also be differentiated according to whether the 

description is positive (describes what is) or negative (describes what cannot be). 

Positive descriptions enumerate the acceptable configuration states of a structure. Such 

approaches have less ability to adapt to a wide range of environmental variation than 

architectures where possible structural configurations are defined using constraints. 

Enumerated configurations have to be thought of by the designer in advance. On the 

other hand, constraint-based approaches potentially provide more indirection in the 

structure because they only define what is not a valid configuration. However, there is a 

cost to this greater indirection: the runtime mechanisms for the selection of components 

and for their configuration need to be more capable, and thus require powerful 

formalisms for reasoning about the structure.  In order of increasingly greater 

indirection in the description, dynamic architectures can be classified as follows:  

• Types of components and connectors are fully specified prior to runtime, as are 

the alternative configurations (as, for example in Dynamic Wright (Allen, 

Douence and Garlan, 1998)). Selection of configuration is predetermined in that 

particular configurations are predicated on particular environmental states. 

• Types of components and connectors are specified prior to runtime, but the 

selection of components and their association with connectors is determined by 

predefined rules for manipulating the structure. It is these operations on the 

structure that are selected when reconfiguration is needed, rather than pre-defined 

configuration states. Operations are often selected by using predefined sequences 

of operations called tactics. e.g. (Garlan, Cheng, Huang et al., 2004) 

• New types of components and connectors can be added at runtime, but the 

selection and combination of components is determined by constraints. At 

runtime, configurations need to be validated, given the constraints and the 

available components. Components do not have to be of the same type or even 

form an equivalence class. For example, the Darwin architecture language 

(Magee and Kramer, 1996) is designed to dynamically define a set of valid 

configuration actions given a set of architectural constraints. The constraints are 

similar to an architectural style (Shaw and Garlan, 1996).  

We will not examine the diverse range of dynamic architecture languages here, as this 

is provided elsewhere (Bradbury, Cordy, Dingel et al., 2004), other than to note that a 

number of them have been used as the representational basis for adaptive frameworks 

that are discussed in the review of literature below.  
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3.2.2. Quality-centric descriptions 
Non-functional transformation is the focus of other approaches to describing software 

architecture5. These approaches are concerned with representing structures in which 

changing performance and other qualities (reliability, resource allocation, security etc) 

can be represented and managed. If an architecture, typically in the form of a 

framework, is to implement non-functional adaptation (reconfiguration and regulation) 

it needs to describe how it performs some, if not all, of the following functions: 

• There must be a way of characterising and quantifying non-functional 

parameter(s) of interest (e.g. latency, reliability, cost). These parameters must be 

represented both as a required value or set of values defined by constraints, and 

as an actual value.  

• It needs to provide, or be able to receive inputs from, mechanisms for monitoring 

the quality attributes of interest. 

• Because non-functional properties typically cross-cut the functional structure, 

those properties may need to be modelled across the system, and across different 

levels of abstraction. For example, if a system is to have a level of reliability then 

its components must also have some level of reliability. 

• Because a system may have a number of competing qualities it needs to satisfy, 

there may need to be a way of balancing these requirements to produce an 

optimal outcome (e.g. throughput versus cost).  

• There needs to be some mechanisms and strategies for mitigating ‘under-

performance’; that is, regulating or restructuring the system when an actual 

quality parameter does not fulfil the requirements for that parameter. 

While each of the frameworks discussed below possess some of the above properties, 

none comprehensively address them all.  

 As was shown in Figure 3-1, a distinction can be made between contract-oriented 

and control-oriented approaches to implementing systems with the above regulatory 

properties. Control-oriented approaches regulate entities by monitoring the changes in 

the values of control variables, and then setting process variables (as described in the 

previous chapter).  Contract-oriented approaches regulate the interactions between 

entities by defining permissible types of interaction and the performance levels of those 

interactions. Both approaches define required performance levels, have some sort of 

monitoring mechanism to ensure the required level of performance is being met, and 

                                                 
5 Outside the context of adaptive software architectures, various approaches to characterising and 
modelling quality attributes have been developed (e.g. (de Miguel, 2003) provides a summary of 
approaches to the specification of QoS models). 
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take action to correct any underperformance. In control systems this involves the 

controller changing some property of the controlled entity. In contracted systems the 

entity needs to autonomously meet the requirement. As contracts can also be used to 

define relationships between components, they can be viewed as connectors that define 

the structural relationships in a system. Contracts (or ‘connector types’ as in (Allen and 

Garlan, 1997)) can therefore be used to describe both the structure and quality of 

relationships, as illustrated in Figure 3-1 above. 

3.3. Distinguishing characteristics of adaptive 
frameworks 

While software architectural languages provide ways to describe software architectures, 

architectural frameworks provide archetypal arrangements of generic types of 

component. The functions defined by adaptive architectural frameworks can be 

differentiated in many ways. As we pointed out at the beginning of this chapter, the 

management of an ontogenically adaptive architecture involves (re)configuration and 

regulation activities. The characteristics of these activities, along with the 

characteristics of the management system itself, vary markedly between frameworks. 

Using these categories of configuration, regulation and management, we define a 

number of differentiators which we will use to compare the dynamic architectural 

frameworks surveyed in the next section of this chapter. These distinguishing 

characteristics can be seen as an elaboration of the desirable properties for adaptive 

architectures we listed in Chapter 1; i.e. grounded, exogenous, self-managed, recursive 

and practical. 

 
1. Configuration 

1.1. Reconfiguration possible at runtime. 

Can the connections between components in the structure be changed at runtime? 

1.2. Composition based on declarative description possible at runtime. 

Is it possible at runtime to create compositions from declarative descriptions, or 

does the basic structure have to be defined at compile time? 

1.3. Functionally recursive structure. 

Do configured composites of components themselves form a unity that can be 

configured into larger composites? Can the management regime be scaled to 

handle the different granularities of such recursive composition? 

1.4. Non-functional restructuring supported. 

Can multiple components of the same type be created in parallel to serve a single 

functional output? 
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1.5. Elements can be substituted (indirection of instantiation supported)  

Can one component be substituted for another component at runtime? Can the 

components be safely substituted? 

1.6. Supports heterogeneous components. 

Can the components in the system be based on different software technologies? 

For example can objects, components, services, and agents be used in the one 

composite?  

1.7. Structure is entirely defined and controlled by management. 

Are the components ignorant of the structure i.e. do they use “blind 

communication” (Oreizy, Gorlick, Taylor et al., 1999), or do the entities that 

form the structure have to have a representation of (some of) the relationships in 

that structure?  

1.8. Partial instantiation possible. 

Can an application built using the framework continue to function even if not all 

components are present at any one time in the structure?  

1.9. Formal reasoning about structure possible. 

Can the structure be formally represented so that it can be reasoned about? For 

example, can proposed compositions be checked for integrity?  

2. Regulation 

2.1. Non-functional regulation possible. 

Does the application have the ability to monitor non-functional properties, and 

adjust its behaviour accordingly?  

2.2. Control dynamics supported. 

Does the application support control-theoretic concepts such as control of 

hysteresis, negative feedback and so on?  

2.3. Utility can be defined arbitrarily 

Can the control variables used to regulate the system be defined arbitrarily by the 

application programmer, or are they intrinsic to the system? 

2.4. Utility requirements can be changed dynamically. 

Can the goal (set-point) to be achieved by some interaction, as measured by a 

utility function(s), be changed at runtime?  

2.5. Type of utility can be changed dynamically. 

Can different types of utility be added to the monitoring mechanisms at runtime, 

or does the measurement utility need to be defined at design time? 

2.6. Multi-dimensional utility supported. 

Can multiple utility functions be evaluated for the one component or transaction? 
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3. Management 

3.1. Mechanisms for determining the need for reconfiguration or regulation are 

defined. 

Are the mechanisms defined by which the application can monitor its 

performance, so that it can regulate its behaviour?   How does the application 

define and monitor the preconditions for reconfiguration? 

3.2. Management as separate entity. 

Are management functions encapsulated in a separate aspect or runtime entity? 

3.3. Management exogenous versus endogenous (Arbab, 1998). 

Can management control the application without having access to the internal 

implementation of the components (blackbox or exogenous coordination) or is 

management endogenous? 

3.4. Management distributed versus centralised. 

To what extent is management distributed down through the structure? Is there 

one central manager for the whole application or does each sub-composite have 

its own manager?   

3.5. Management structure not subject to single point of failure. 

Are there critical management nodes whose failure will lead to failure of the 

whole application? Even if management is distributed there may still be 

dependencies between management nodes that can result in single point of 

failure.  

3.6. Separate management structure. 

If there are separable management entities, do these entities have a network 

separate from the functional structure? 

3.7. Management can find and/or select components (i.e. resolves indirection of 

instantiation). 

Are runtime mechanisms defined (or referred to) for finding suitable candidate 

components, and for selecting the best candidate?   

3.8. Management mechanisms can be superimposed a posterior on functional 

components. 

Can an organisational structure be superimposed on components that have not 

been designed to participate in such a structure? Exogenous management (point 

3.3) is a prerequisite this superimposition. 

3.9. Management is updatable. 

Can management entities be dynamically updated with new strategies for 

managing their composites? Alternatively, are mechanisms defined for a 

manager to improve its strategies by learning? 
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3.10. Management is substitutable. 

 Can a less capable manager be replaced with a more capable manager? 

3.11. Supervisory control possible. 

Can management control be overridden by external control (e.g. a human 

controller) in some circumstances? 

3.12. Costs of reconfiguration can be estimated. 

Are mechanisms defined to enable the manager to recalculate the costs of 

reconfiguration, and to prevent unwanted oscillations in the system when 

reconfiguration occurs?   

4. Other  

4.1. Implementation is apparent. 

Is there evidence in the literature that the architecture has been implemented and 

evaluated? 

 
The above characteristics are a compendium of features relevant to ontogenic 

adaptation found in the various adaptive architectural frameworks discussed below. As 

such, none of the frameworks discussed meet all of the above criteria. Some of the 

frameworks partially meet a criterion: for example, Plastik (Batista, Joolia and 

Coulson, 2005) supports the definition of multi-dimensional utility, but this can only be 

defined at design time. There are other desirable criteria that none of the frameworks 

adequately address. In particular, although some frameworks allow the measurement 

and regulation of quality attributes of particular components, none adequately define 

mechanisms for formally reasoning about the aggregated performance of a composition 

(as, for example, proposed in (Khan and Han, 2005)) . Such mechanisms would allow 

the aggregated system-level performance to be derived from the individual actual 

performances of the system’s components, or the required component performances to 

be derived from a system-level requirement. However, some of the frameworks do 

provide a basis for the future development of such capability. 

3.4. Existing surveys and selection of literature 
Surveys have been conducted on dynamic Architectural Description Languages 

(ADLs). Medvidovic and Taylor (2000), in their survey of ADLs, use dynamism as one 

of their criteria. A more specific focus on dynamic ADLs can be found in (Bradbury, 

Cordy, Dingel et al., 2004) (Bradbury, 2004) and a literature review in Georgiadis’s 

thesis (2002). In terms of dynamic architectural frameworks, however, much of the 

work is recent and currently evolving. We are not aware of any comprehensive survey 

of the adaptive frameworks that takes a broadly architectural perspective. Some of the 
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work on adaptive frameworks has direct antecedents in research into dynamic ADLs, 

but other adaptive approaches arise from work done on distributed, pervasive, reliable, 

survivable, autonomous, adaptive middleware, resource-aware real time, control-

oriented, grid, service-oriented software systems (to name a few strands).  

 The following survey of literature on adaptive frameworks has been limited to 

those approaches that involve some form of structural reconfiguration, and have 

architectural elements that perform a defined management function. Based on the 

work’s predominant focus, we have divided this literature into the categories shown in 

Figure 3-1 above: 

• Structure-centric frameworks 

• Control-oriented frameworks 

• Contract-oriented frameworks 

What this survey does not cover  
We have limited this survey to recently developed frameworks. Adaptive frameworks 

developed in the 1990’s such as (Kokar, Baclawski and Eracar, 1999; Wermelinger, 

1998; Oreizy, Gorlick, Taylor et al., 1999) are not discussed as little subsequent work 

seems to have eventuated from these early approaches. Nor do we discuss what could 

be termed adaptive architectural styles such as C2 (Medvidovic, Oreizy, Robbins et al., 

1996) and Weaves (Gorlick and Razouk, 1991). These styles impose restrictions on 

how components can be connected, and how they can asynchronously communicate via 

connectors. Although, in both C2 and Weaves, structures can be arbitrarily complex 

and can be dynamically manipulated, they do not define any management 

infrastructure.  

 We also limit this survey to architectures that can define application specific 

compositions. Other work has focused on defining generic adaptive middleware. Agha 

(2002) argues that as software applications becomes more open and mobile, 

middleware needs to move from being a glue that binds distributed systems together, to 

being an enabler of dynamic interactions between autonomous actors. McKinley (2004) 

sees middleware as the logical place to put adaptive behaviour that is related to cross-

cutting concerns such as QoS, fault tolerance and security policy. Adaptive frameworks 

that address or rely heavily on middleware include COCA (Zhou and McKinley, 2005) 

and CASA (Mukhija and Glinz, 2003). Other approaches see adaptive middleware as 

the key to ubiquitous computing, with middleware providing adaptive management to 

distributed applications (Hallsteinsen, Floch and Stav, 2005). Such applications may 

make use of middleware as enabling technology that can provide services such as 
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introspection and interception. Yet other approaches such as (Hillman and Warren, 

2004) focus on providing algorithms and frameworks to ensure that system integrity 

(synchronisation and state) is maintained during developer-initiated reconfiguration, in 

particular, during component interchange. The focus in this thesis, however, is on 

adaptive applications.  

 Coordination languages also have much in common with dynamic architectures 

(Cuesta, de la Fuente and Barrio-Solárzano, 2001). In particular, control-oriented 

coordination languages (Arbab, 1998) compose and control the computational entities 

in loosely coupled systems. Coordination frameworks by Andrade, Wermelinger and 

colleagues (Wermelinger, Fiadeiro, Andrade et al., 2001) have much in common with 

the dynamic architectural frameworks examined here. For example (Wermelinger, 

Fiadeiro, Andrade et al., 2001; Andrade, Fiadeiro, Gouveia et al., 2002) define a 

layered architecture with computation, coordination and configuration layers(‘3C’),  

and where contracts are first-class entities. However, 3C is not architectural in that its 

contracts are method-centric rather than entity-centric; that is, they define generic 

interaction sequences that might involve many parties. Such approaches are primarily 

focused on synchronisation rather than adaptivity. 

 Other works that are not included in this survey are those approaches that focus 

solely on adaptation to variable computational and/or network resources. A number of 

adaptive control-based architectures focus on reconfiguration as a way of making 

systems more survivable or dependable.  For example, the Willow Survivability 

Architecture (2001)  (Knight, Heimbigner, Wolf et al., 2002) is focused on the 

reconfiguration of large scale, heterogeneous, distributed systems to achieve network 

fault tolerance. “The Willow concept derives from a realisation that software 

configuration control and network fault tolerance are two different aspects of the 

general problem of overall control of distributed systems” (ibid). While there are many 

conceptual similarities between Willow and the architectures discussed below, in 

Willow the emphasis is on the sensing and maintenance of wide-area network state. 

Similarly, work by de Lemos and colleagues (de Lemos and Fiadeiro, 2002) propose 

architectures that are fault tolerant. Likewise, the SMART (State Model Adaptive Run 

Time) framework (Cangussu, Cooper and Li, 2004) focuses on applying control theory 

in the form of linear state feedback models of the computational environment. 

Resources (CPU, memory, bandwidth, etc) are monitored. A model of the ‘dominant 

behaviour’, given these constraints, is formed, and then used as the basis for selecting 

off-the-shelf components from a repository. This approach is not architectural in the 
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sense that the structural relationships in the system do not change. The focus is only on 

component replacement.  

 Another control-centric approach is IBM’s autonomic computing initiative (Ganek 

and Corbi, 2003). Like the control-based frameworks discussed below, autonomic 

computing conceives of a control-loop with three phases: sense-evaluate-act. As 

originally envisioned, autonomic computing covers four aspects of self-management: 

self-configuration; self-optimisation, self-healing; and self-protection (Kephart and 

Chess, 2003). This broad conceptual vision has much in common with the themes of 

this thesis. However, rather than being a particular framework or methodology, 

autonomic computing is an umbrella that covers a diverse range of techniques, tools 

and infrastructure platforms6.  

 Current work on Web Service frameworks and standards also addresses many of 

the same issues as dynamic architectures including dynamic composition, service 

selection and management. Such parallels are unsurprising as the issues that confront 

adaptive systems at a general architectural level still need to be solved in 

technologically-specific approaches, such as Web services. Like dynamic software 

architectures, work on Web services needs to address both functional and non-

functional adaptation. Service composition standards such as BPEL4WS (BEA 

Systems, IBM, Microsoft et al., 2003) are not adaptive per se. Consequently there has 

been much recent focus on making service composition more flexible. A recent 

overview of dynamic workflow-based composition can be found in Zirpins, Lamersdorf  

et al. (2004). These approaches focus on adaptive processes using process abstraction, 

rather than focussing on adaptive structures as in architectural approaches. In terms of 

non-functional adaptation, monitoring of services has also been addressed. Web 

Services Distributed Management of Web Services WSDM-MOWS defines 

“manageability” interfaces for Web services (OASIS, 2005) which could provide a 

starting point for building adaptive Web services. Li, Han et al. (2005) show how the 

interactive behaviour of a service can be declared and monitored to see whether its 

behaviour conforms with the composition’s requirements. Baresi, Ghezzi, et al. (2004) 

use external ‘Smart Monitors’ services rather than application-based monitors. 

However, there is no mechanism for ‘monitoring the monitors’ (organisers and 

contracts) as in a recursive structure. Ludwig, Dan, et al. (2004) propose the Cremona 

framework that addresses many of the same issues as this thesis but focuses on external 

service level agreements (SLAs) based on WS-Agreement (Global Grid Forum, 2004) 

                                                 
6 In practice, IBM now brands “autonomic” any IT management software that conforms to IBM’s 
standards. 
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rather than on the management of adaptation. Likewise, much work has be done on 

dynamic SLAs in the context of Service-Oriented Computing paradigm, e.g. ( IBM 

Corporation, 2003; Skene, Lamanna and Emmerich, 2004; Tosic and Pagurek, 2005). 

These ‘external’ mechanisms are outside the scope of this review and thesis.  However, 

later in this thesis, we show how the ROAD framework can be applied to Web service 

composition (see also (Colman and Han, 2006a; Colman, Pham, Han et al., 2006)). 

 Finally, approaches that are solely agent-oriented are not covered by this survey. 

Agent-oriented methodologies take as a sine qua non open and dynamic environments 

to which agents have to adapt. A major on-going research issue for multi-agent systems 

(MAS) is how to achieve system level goals from collections of individual agents. 

While much of the work to date has focused on negotiated team building and 

organising mechanisms such as norms, there is a growing recognition of the need for 

organisational structures (e.g. (Jaime Sichman, 2005),(Dignum, 2003)). A number of 

methodologies developed, such as Gaia (Zambonelli, Jennings and Wooldridge, 2000), 

explicitly address the need for organisational structure in software. We refer to MAS 

literature again in Chapter 5 when we come to examine the nature of roles in software, 

but we do not examine MAS approaches further in this review, as MAS adaptation is 

largely a result of individual agents’ deliberations rather than organisational change.  

3.5. Structure-centric frameworks 
As pointed out above in Section 3.2.1, structure-centric descriptions of architectures 

can be loosely classified as those that describe sets of valid configurations, those that 

define reconfiguration operations and tactics, and those that define constraints. In this 

subsection we discuss three structure-centric frameworks that use various combinations 

of these descriptions. 

3.5.1. Darwin based frameworks – using constraints 
Rather than define what an architecture is, constraint-oriented approaches define what 

an architecture is not. As discussed above, such an approach potentially provides 

greater indirection, and thus adaptivity, to the structure, but at the cost of having to 

resolve that indirection at runtime. To do this the manager needs to be able to generate 

and reason about valid alternative structures. Constraint-oriented approaches, therefore, 

need appropriately powerful ADL formalisms. The constraint-oriented approaches that 

are examined here do not describe any mechanisms for QoS control. Georgiadis (2002; 

Georgiadis, Magee and Kramer, 2002) proposes a runtime architecture based on the 

Darwin architecture language (Magee and Kramer, 1996). The Alloy language 
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(Jackson, 2002) is used to model Darwin-compliant components7 so that structural 

constraints can be expressed and analysed. This approach uses architectural constraints 

as the basis for the specification, design and implementation of self-organising 

structures for distributed systems. The advantage of having a self-organising 

architecture is that there is no central configuration manager that can fail. Self-

organisation is achieved through each runtime component having a component 

manager that maintains a representation of the enclosing structure (the configuration 

view in Figure 3-2 below). The component manager is responsible for the connectors to 

the required ports of other components. If there is any change in these connections, the 

component broadcasts the change to all other component managers. This enables each 

of the component’s configuration models to be kept consistent. 

 The manager of each component is responsible for checking that the changes it 

plans are consistent with the architectural constraints it holds. If the component fails, it 

only affects the services it provides, and the connections to these services are always 

controlled by the ‘client’ component (components control their required ports). This 

way the failed component can always be replaced.   

 

 
Figure 3-2: Self-managed components (from (Georgiadis, Magee and Kramer, 2002)) 

 
 This approach has a number of limitations. While Darwin’s formalism enables 

automated reasoning on the structure of the architecture, it only expresses structural 

relations. There is no provision in the framework for modelling non-functional 

properties. Nor is there any provision for instrumenting the structure so that 

performance can be measured.  

                                                 
7 A component, in Darwin, is a container of provided and required services. Services are provided and 
required via ports. Ports are typed with the interface that is used to access the service. A component is 
always associated with the same fixed number of ports during its lifetime. Conversely, ports should always 
be contained by the same simple component during their lifetime. The set of ports that belong to a 
component is the union of its provisions and requirements. 
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 The examples used by Georgiadis show how to construct simple architectural 

styles (such as a pipeline) from constraints. Whether more complex domain-specific 

architectures can be defined from constraints is problematic. For example, in the realm 

of agent-oriented programming it has proved difficult to produce purposeful behaviour 

purely from constraints formulated at design time (Shoham and Tennenholtz, 1995). 

Waewsawangwong (2004) recognises the difficulty in deciding the architectural 

structure at runtime, based on constraints alone. He proposes an extension to 

Georgiadis’s work that uses tactics.  Tactics imperatively specify how a component can 

assemble or reorganise itself in order to satisfy a given set of constraints. This work 

appears to be at a very preliminary stage. 

 While the aim of this approach is to create distributed management, this comes at 

the cost of requiring global communication between all the components. However, 

hierarchical composition that can be expressed in Darwin may mitigate this problem to 

some extent. In a hierarchy the scope of the shared model that has to be maintained by 

the components would be reduced, thus, in turn, reducing communication overhead and 

the chance of inconsistencies between the various copies of the model that the 

components hold. However, hierarchy comes at the cost of reintroducing single-point 

failure problems that are avoided in fully distributed control. 

 Other limitations of this approach are as follows. It is not clear how changes, that 

simultaneous effect a number of components, can be orchestrated. Nor is there an 

ability to validate structure or behaviour at the system level. This is because checking is 

at the component level, and system-level behaviour can only be represented indirectly.  

 Component managers (or the designer of the constraints) presumably need a 

white-box understanding of the component to derive their constraints. Therefore, 

coordination is not exogenous, in that it cannot be imposed on blackbox components. 

Nor is management separable from the components. There is no way to introduce 

“smarter” management at runtime (while rigorous, the form of structural management 

described is very limited). 

 Each component conducts instantiation of its required ports using a selector 

function (at the time of writing this was manually coded rather than automated). As 

there is no way of reasoning across the structure, how is it possible to know in advance 

if there is a valid instantiation of the architecture? The following claim that the 

“architecture stabilizes when all those required ports that can be bound are bound. 

Stability is guaranteed in the absence of continuing failure for those systems in which 

configuration rules guarantee monotonically increasing binding.” (Georgiadis, Magee 
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and Kramer, 2002 p36). This assumption, that stability will be reached, seems to 

assume that compatible components will be found. 

3.5.2. Plastik  - using pre-defined configuration actions and 
constraints 

Plastik (Batista, Joolia and Coulson, 2005) is a framework that supports a formally 

specified runtime reconfiguration of systems through the integration of the 

ACME/Armani ADL (Monroe, 2000) with a reflective component level runtime 

(OpenCOM (Coulson, Blair, Grace et al., 2004)). The ADL description has two sub-

levels, as illustrated in Figure 3-3 below. The style level defines generic patterns (e.g. 

protocol stack style) by setting constraints on the way types of component, connectors 

and interface operations (‘properties’) can be composed. A configuration defined by a 

style is encapsulated in a ‘component framework’.  The instance level particularises the 

style for a specific context (e.g. TCP/IP stack). 

 

 
Figure 3-3: Plastik's System Architecture (from (Batista, Joolia and Coulson, 2005)) 

 The ‘system configurator’ is also divided into two levels. The singleton 

architectural configurator is responsible for accepting and validating reconfiguration 

requests from the ADL levels, while each deployed ‘component framework’ has a 

runtime configurator that manages the runtime level. Constraints at the ADL level are 

compiled into finite state machines in the runtime configurators. These configurators 

are implemented in a scripting language that is generated by a compiler. This script 

instantiates OpenCOM elements that correspond to ADL-level specifications. 

 Plastik supports ‘programmed’ and ‘ad-hoc’ reconfiguration. Programmed 

reconfigurations can be foreseen at design time and are expressed as ‘predicate-action’ 

specifications. Ad-hoc reconfiguration, on the other hand, specifies certain invariants 

which configurations cannot violate. Ad-hoc configurations are not specified at the 

ADL level (only the constraints are specified), but change can be initiated from either 
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the ADL and runtime levels. Change from the ADL level can be initiated by submitting 

an architectural modification script to the architectural configurator, which is then 

compiled into ‘diff’ script for the runtime configurator. 

 The key advantage to Plastik’s approach is that it combines high-level 

reconfiguration concepts with a robust runtime component framework. However, the 

separation of architectural and runtime layers into two separate representations 

connected by compiled scripts, creates the problem of keeping the two representations 

synchronised. This is particularly so because change can be initiated at either level. 

There is also no discussion, in the work reviewed, of the nature of the runtime 

conditions that can trigger reconfiguration. Nor is there a way to explicitly model non-

functional requirement or change. The only reconfiguration operations are the addition 

and removal of components. Monitoring is not part of the framework but is something 

that, it is claimed, can be provided by the components or a third party. At the time 

(Batista, Joolia and Coulson, 2005) was written, the Plastik system had not been fully 

implemented, although “key aspects of the design” had been trialled.   

3.5.3. ArchJava – creating predefined configurations 
ArchJava (Aldrich, Chambers and Notkin, 2002) is an extension of Java that allows the 

structural architectural description to be written in implementation code. The authors 

see the advantages to not having a separate ADL as promoting traceability and ensuring 

consistency between the architecture and the fine grained implementation. The 

ArchJava language adds architectural constructs to support components, connections 

and ports. A component is a special type of object that communicates with other 

objects in a structured way via ports. Regular method calls are not allowed. Ports 

represent logical communication channels that can be specified as provides, requires, 

and broadcasts. Components can be composed of other connected components. Nested 

subcomponents can either be statically or dynamically created. Dynamic components 

can be created with a parent component using a new operator, as is used to create 

ordinary Java objects. Connectors can also be dynamically created, and will be 

removed when they are no longer referenced. 

 While ArchJava does not address the management aspects of adaptive systems, an 

extension has been proposed that uses custom connectors (Aldrich, Sazawal, Chambers 

et al., 2002) based on ArchJava. However the proposed framework only describes the 

structural aspects of an application, and does not address behavioural or non-functional 

aspects. It also assumes synchronous communication between components. Despite 
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this, ArchJava potentially provides a starting point for a generic approach to building 

adaptive applications.  

3.6. Control-oriented frameworks – taking non-functional 
requirements into account 

Other frameworks reconfigure and regulate themselves in response to perceived 

changes in qualities of interest. Control-oriented approaches to architectural adaptation 

adopt the paradigm suggested by Shaw (1995); that is, of software systems being 

control systems. These frameworks define a control-loop with three phases: sense-

evaluate-act. Software is envisaged with a separate control component(s) or layer that 

monitors the system and adapts the structure to changing environments or 

requirements. Much recent work on adaptive architectures has originated from 

Carnegie Mellon University (Cheng, Garlan and Schmerl, 2005; Huang and Steenkiste, 

2004; Garlan, Cheng, Huang et al., 2004; Cheng, Huang, Garlan et al., 2004; Garlan, 

Poladian, Schmerl et al., 2004). In these related approaches, the system’s architecture is 

used as the control model in the runtime system. This model makes the system’s 

topology and behavioural constraints explicit. 

3.6.1. Rainbow  
Rainbow (Garlan, Cheng, Huang et al., 2004; Cheng, Garlan and Schmerl, 2005) is a 

framework that is designed to provide a reusable infrastructure together with 

mechanisms for specialising the infrastructure to specific systems. The reusable units in 

the Rainbow framework are in three layers: 

• System-layer infrastructure. Provides an interface to the functional system  

o Probes for measuring the system 

o A resource discovery mechanism to find new resources based on some 

criteria 

o An effector for carrying out system modification 

• Architecture-layer infrastructure. Maintains the representation of the architecture 

and plans and executes adaptations. It includes a 

o Model manager that provides access to the architectural model 

o Constraint evaluator that checks the model periodically and triggers 

adaptation if constraints are violated 

o Adaptation engine that determines what adaptations (strategies and tactics) 

need to be performed. These are then executed by the Adaptation engine. 
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• Translation infrastructure. Maps information across the abstraction gap between 

the system and architecture layers – for example, translates an architectural level 

change operation into a system-level operator. 

 
Figure 3-4: Rainbow framework (from (Garlan, Cheng, Huang et al., 2004)) 

 The authors believe that common architectural styles will be able to be extended 

with “adaptation styles”; that is, with prototypical adaptation operators and strategies. 

Adaptation operators define reconfiguration operators common to the style – for 

example AddService and RemoveService. Adaptation strategies specify the changes to 

be made to the system in response to the underperformance of some requirement – 

whether functional or non-functional. Given the constraints and a determination of the 

problem, a tactic is used to mitigate the problem. 

 The Rainbow framework assumes that the management framework has access to 

some measurement, resource discovery and effecting mechanism to observe and change 

the functional system. In this sense, while Rainbow is exogenous to the functional 

system, the management regime cannot be superimposed retrospectively on the 

functional system. The functional system must have the necessary instrumentation to 

allow itself to be monitored, and must also have the mechanisms to allow its structure 

to be reconfigured. Applications, therefore, either need to be designed to comply with 

the requirements of the management framework (and these may not be known at 

design-time), or must conform to some common middleware standards. The 
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adaptability of the management framework is therefore limited, because the required 

probes and effectors may not be present in the functional system or middleware.  

 In Rainbow, adaptation strategies are globally defined across the architecture. The 

authors point out that having a central representation of the architecture makes the 

system subject to single-point failure. Application examples focus on network 

reconfiguration. They suggest, as future work, applying Rainbow instances to multiple 

subsystems of a distributed system. These instances would then need to be coordinated. 

However, it is not clear how generalisable such strategies would be across subsystems. 

3.6.2. Self-management modules  
A variation of the Rainbow framework is found in (Cheng, Huang, Garlan et al., 2004). 

There is a recognition that management concerns (composition, change, performance, 

cost-of-service, etc.) are multi-dimensional and need various utility models. This 

approach encapsulates these models that cross-cut the functional system in “Self-

management modules” (SMs). Each module is responsible for a different management 

concern across the system. The paper addresses the problem of coordination of multiple 

SMs to ensure desirable system-level behaviour. 

 Coordination between SMs is necessary at each phase of the sense-evaluate-act 

control-loop. As shown in Figure 3-5 below, coordination in each of the phases is, 

respectively, addressed by: 

1. Sensing: Consistent system access – so that all SMs are sensing the same system 

data and translate that data in the same way. 

2. Evaluation: Non-conflicting decision making – common utility models need to be 

used to interpret the data on resources. For example, what is “high cost” or 

unacceptable “slow speed”? Mechanisms for resolving/negotiating 

conflicting change requirements of SMs are also needed.    

3. Action: Consistent model – when more that one SM wants to make a change to the 

system, they must be able to share information to coordinate action, and 

consequently need a consistent model of the architecture of the system.  

The paper addresses the first and third of these coordination aspects. The second, and 

presumably much more problematic aspect of coordinated decision making, is left to 

future work – although they do suggest some general control patterns like “master-

slave”, “democracy”; “balance-of-power” (mutual veto); etc.  
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Figure 3-5: Rainbow framework extended with multiple Self-Managed Modules (SMs) 

 (from (Cheng, Huang, Garlan et al., 2004)) 

 In their example, they categorise Libra (a global configuration approach) and 

Rainbow as SMs, and attempt to coordinate the management between these. Libra’s 

focus is “global configuration”, whereas Rainbow follows an “incremental adaptation” 

approach8.  These SMs are differentiated as implementations with different scopes of 

action, rather than being SMs that address various utility functions. (The aim, 

presumably, is to make use of COTS management components). 

 This variation of Rainbow has a number of limitations. The term “self-

management module” to describe these cross-cutting management modules seems to be 

a misnomer.  The scope of application of these modules is still global, like the original 

Rainbow framework. The functional components within the framework are not self-

managed. Failure of a SM will lead to failure of the management for that concern (e.g. 

accounting) across the whole system. 

 While this approach modularises management concerns, these concerns are rarely 

orthogonal.  Typically, non-functional requirements (performance, cost, reliability etc.) 

are highly inter-related, and need to be traded-off against each other. It is not clear that 

                                                 
8 An alternative to the functional/non-functional distinction is provided by (Cheng, Huang, Garlan et al., 
2004), who distinguish between “global configuration” and “incremental repair”. We would argue that a 
definition based on scope of change is not particularly useful, as the same types of reconfiguration 
processes occur at all levels of granularity.  
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the separation of non-orthogonal management concerns into separate modules is a 

sensible approach. While the separation of these concerns may add analytical clarity 

and perhaps enhance reuse, the management system must sense, decide and act as a 

unity. Such an approach creates a problem of synthesis of these concerns. Attempting 

to apply coordination management at a global level, as this framework does, comes at 

the cost of considerable additional complexity. (The authors themselves point to the 

problem of the explosion of coordination paths between SMs). A better approach may 

be to provide the as-needed ability to add coordination at the interaction level, as is 

done in contract-based approaches. Conflicts between NFRs (coordination 

complexities) can then be resolved at a more local level. 

 For these reasons, we would argue that decomposing a management system on the 

basis of management concern rather than function, leads to a complex, hard-to-change, 

non-scalable and ultimately unmanageable organisation. Nor does this form of 

decomposition address the problem of single-point failure. 

3.6.3. Rainbow variant (Huang et al.) 
Another framework related to Rainbow is described in (Huang and Steenkiste, 2005; 

Huang and Steenkiste, 2004). Like Rainbow,  it adopts an externalised approach to 

adaptation, but the focus is on allowing developers to add run-time adaptability to their 

services. The framework assumes the initial configuration of the service is already 

completed, and that infrastructure for measurement and service discovery are already in 

place. The adaptability provided by the framework is limited to self-adaptation 

capabilities for a single component; that is, changing its parameters or replacing it. The 

developer defines coordination policies and adaptation strategies that can comply with 

the framework’s knowledge representation, and can, in turn, be used by the generic 

“synthesizer” in the runtime framework to compose and adapt the service. This 

approach has similarities to (Georgiadis, 2002) (as described above) in that 

management is focused on the individual component (service). In this case, however, a 

knowledge representation of the service’s policies and strategies is passed to a 

generalised adaptation coordinator/manager which is responsible for carrying out the 

adaptation. In (Georgiadis, 2002), adaptation decision making and action is the 

responsibility of the component itself. The figure below illustrates Huang et al.’s 

approach to “self-adaptation” 
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Figure 3-6: Architecture for runtime local adaptation support  

(from (Huang and Steenkiste, 2005)) 

 
 Adaptation strategies are the same as in Rainbow – when a constraint is violated, 

the problem is determined and a tactic (set of actions) employed to mitigate the 

problem. The actions can include altering component parameters, as well as component 

addition and/or replacement. Strategies are created by the service developer specifying 

rules dictating what mitigation actions will be taken when particular events occur. 

These strategies are specified using the framework’s API.  

 In the framework, the Adaptation Manager (AM) proposes a change of 

configuration to the Adaptation Coordinator (AC). The AC’s task is to coordinate 

various proposals to resolve conflicts and to identify incompatible strategies.   

 The authors distinguish their action-event approach from the a “utility function” 

approach (Walsh, Tesauro, Kephart et al., 2004). However, it would seem to us that a 

utility function is just a continuous action-event function rather than a discrete function, 

as described in the paper. Both types of function take, as an input, a change in state of 

the system or its environment, and then output preconditions for a management action. 

Continuous utility functions can define events that are triggered when the utility 

function passes certain discrete threshold values. Such events could in turn trigger, for 

example, a reconfiguration action. 

 This variation of the Rainbow framework has the advantage of being able to focus 

adaptation strategies to specific services/components, and to have those strategies 
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defined externally. This decoupling of (1) the mechanisms for executing a change from 

(2) the definition of the high-level strategy to carry out the change, is a useful property 

of adaptive systems. As will be seen later in this thesis, our approach of separating 

management roles and players facilitates this decoupling.  Depending on how the 

framework is implemented, this decoupling could presumably allow strategies to be 

developed and modified dynamically at runtime, thus allowing for adaptive learning or 

supervisory control. Such directions for use, composition and repair (a “service recipe”) 

of the service could be declaratively defined, and append to the service in, say, an XML 

file to the service.  

3.6.4. Aura - task based self-adaptation  
As we have pointed out above, the need for adaptation can arise from a change in the 

environment of the system, or from a change in what is required of the system. One 

example of requirement change is the situation in which pervasive or ubiquitous 

systems need to change their behaviour to suit the current user, or the user’s context. In 

the Aura project, Garlan et al. (2004) define an adaptive framework for the construction 

of “task-aware” systems. A task is a “set of services, together with a set of quality 

attribute preferences expressed as multidimensional utility functions, possibly 

conditioned by context conditions.” 

 Tasks models capture and model user goals and intent, and represent quality 

attributes of the services that perform those tasks. These quality goals can be 

conflicting. The adaptive system needs to find the optimal balance of qualities to suit 

the user’s goals. To do this it needs to evaluate and consolidate multi-dimensional 

utility functions. For example, in a video application bandwidth, screen size, frame rate 

might all have to be balanced given the user’s goals and resource constraints. 

 Aura is an infrastructure with three layers. These layers and their respective 

functions are: 

• Task Management (TM) – determines what the user needs from the environment 

at a specific time and location 

o monitor the user’s task, context and preferences 

o map the user’s task to needs for services in the environment 

o complex tasks: decomposition, plans, context dependencies 

• Environment9 Management (EM) – determines how to best configure the 

environment to support the user’s needs 

                                                 
9 The Environment in Aura refers to the user’s environment rather than just the computing system’s 
environment. 
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o monitor environment capabilities and resources 

o keeps track of available service suppliers 

o map service needs, and user-level state of tasks to available suppliers 

o ongoing optimisation of the utility of the environment relative to the 

user’s task 

• Environment – comprises the applications and devices that can be configured to 

support the user’s task 

o monitor relevant resources 

o fine grain management of QoS/resource tradeoffs 

This framework can be viewed as consisting of two feedback loops – the TM reacts to 

changes in, and maintains a model of, user preferences and context. The EM, on the 

hand, monitors the applications, devices and resources, and maintains a model of the 

technical environment.  The EM also has to take account of the cost of change to the 

configuration of the system, and ensures oscillation is avoided.  

 

 
Figure 3-7: The Aura Architecture for Ubiquitous Computing  

(from (Sousa and Garlan, 2003)) 

 The Aura project introduces an important concept to control-oriented adaptation in 

software; that is, control loops are needed to adapt to both the external environment 

(user, system context, problem domain), and the computational/network environment 

(bandwidth, CPU, memory etc.). The multi-dimensional nature of quality attributes is 

recognised, and formalisms (albeit crudely modelled) are introduced to calculate 

optimal utility (Poladian, Sousa, Garlan et al., 2004). This has the potential to 

complement the extensive work on user modelling, task analysis and adaptive user 

interfaces (e.g. (Norman, 1984),(Horvitz, 1999),(Taylor, 1988), (Sullivan and Tyler, 

1991), (Duce, 1991)). Work on goal-oriented reasoning about non-functional 
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requirements  (e.g. (KAOS, 2003), (van Lamsweerde, 2001; van Lamsweerde, 2003)  

could also be used to extend this approach. 

3.6.5. Viable System Architecture 
The Viable System Architecture (VSA) proposed by (Herring, 2002), takes an 

explicitly control-theoretic approach to building software systems. This high-level 

reference architecture defines a set of interfaces for components that accords with the 

control model postulated in Beer’s Viable System Model (Beer, 1984) which we have 

already discussed in Section 2.2.4 of the previous chapter. Herring takes Beer’s concept 

of a “viable system” and proposes the encapsulation of such systems into “viable 

components”. Each viable component potentially implements all the management 

subsystems (described in the previous chapter), and has a standard set of interfaces that 

allows the subsystems within each component to communicate. A viable software 

system is made up of a recursive hierarchy of viable components. The recursive nature 

of the architecture, and the relationship between the subsystems, is illustrated in Figure 

3-8 below. In the figure, the management systems (2-5) control the Plant system 1. The 

Plant has three viable subsystems (A, B, C) each with their own controllers (1A, 1B, 1C). 

There are also typed communication links between the controller in the enclosing 

component, and the controllers in the subcomponents (not shown).  

  

 
Figure 3-8: Simplified Viable System Model Diagram (from (Herring and Kaplan, 2000)) 

 Viable System Architecture has a number of strengths. The distinction between 

different types of control provides a more nuanced basis for discussing control in 

adaptive systems. In particular, it addresses issues such as regulation, stability and 

homeostasis that are rarely discussed in the context of software architectures. The 

recursive architecture of self-managed components also provides a way to handle 

complexity. All components have a common set of abstract management interfaces.    

However, the downside of this approach is the complexity of the components. In 



Chapter 3   Adaptive Software Architectures 57 

  

practice, not all components need such a complex structure, and in the examples given 

in (Herring, 2002) many of the control functions are in fact deprecated. Despite these 

limitations, VSA does attempt to embody two important principles that help manage 

complexity in dynamic systems. The first is the strict separation of control/management 

from process/function. The second is local control – that is, the distribution of 

control/management down through the structure.  

3.7. Contract-oriented frameworks 
The control-oriented frameworks discussed above focus on the monitoring and control 

of components through the sensing and manipulation of control variables. Contract-

based frameworks, on the other hand, exercise control through the (dynamic) 

specification of the relationships which components must follow. In the frameworks 

discussed below, there are differences in the types of contract described. Some 

contracts are compositional in that they define the valid configuration(s) of a 

composite. Other contract-based frameworks view contracts as exercising control by 

constraining the interactions between components. In this sense, contracts are both 

structure-centric and quality-centric descriptions, as discussed at the beginning of this 

chapter (Figure 3-1). Contracts can define both the existence of relationships (hence 

structure), as well as the quality of those relationships. Some frameworks described 

below, such as ConFract (Collet, Rousseau, Coupaye et al., 2005) and the framework 

described in this thesis, have contracts that perform both these functions. 

 As illustrated in Figure 3-9 below, there are two methods of defining and 

controlling the quality of relationships. The first method is to control the interface of 

the component involved in any association so that only behaviour acceptable to the 

contract can occur over that interface. This common approach (as typified by Meyer’s 

(1988) Design-by-Contract) characterises the non-functional properties of the 

component interface irrespective of its actual relationships.  

 
Figure 3-9:  Aspects of contracts and methods of controlling interactions 

Contracts 

As defining existence 
of associations 

(structure-centric 
description) 

As defining type and 
quality of interactions 

(quality-centric 
description) 

Control of 
Component 

interface 

Control of 
Connectors 
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 The second method focuses on characterising and controlling the connectors rather 

than characterising the components. This is the approach adopted in this thesis.  Non-

functional relationships can always be reduced to an abstraction over functional 

relationships. While we tend to think of a non-functional requirement as a property of 

an entity (role, object, component, etc), it is always a requirement in relation to some 

other entity (or entities). In terms of a contract, a non-functional property of a 

relationship has both a requirement (obligation) and a state-of-fulfilment of that 

obligation (performance). Non-functional properties can be viewed as abstractions 

across functional interactions, even through many such properties (e.g. availability, 

fault tolerance) may be invariant for all of a component’s relationships. While none of 

the frameworks discussed in this literature review adopt this second method, we 

highlight this distinction here as a point of contrast to our ROAD framework which is 

described in the next part of the thesis.  

3.7.1. ConFract – contracts for controlling composition and 
behaviour 

ConFract is a framework that uses contracts to create hierarchical component 

compositions   (Collet, 2001; Chang and Collet, 2005; Collet, Rousseau, Coupaye et al., 

2005). It is based on the Fractal component model (Bruneton, Coupaye and Stefani, 

2002) which has the following main features: 

• Composite components that provide a uniform view of the application at various 

levels of abstraction 

• Shared components to model resources and resource sharing while maintaining 

component encapsulation 

• Reflective capabilities to monitor the running system  

• Reconfiguration capabilities to deploy and dynamically reconfigure the system 

• Openness, in that almost everything is optional and can be extended. 

From an external point of view, Fractal components are connected through server 

(provided) and client (required) interfaces. A fractal component is formed from a 

membrane and a content. The content is composed of other components. The 

membrane embodies the control behaviour. In particular it can: 

• intercept ingoing and outgoing operation invocations  

• superimpose a control behaviour on a component’s sub-components 

• provide an explicit and connected representation of component’s sub-components 

Every external interface has an associated internal interface. Figure 3-10 below 

illustrates a Fractal component made up of other Fractal components. The Copier 
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component, contains Printer and Scanner components bound by contracted interfaces. 

These contracts can be automatically generated from contract specifications, as 

illustrated in the figure. 

 
Figure 3-10: Fractal component and contracts (from (Collet, Rousseau, Coupaye et al., 

2005)) 

 Collet et al. (2005) point out that interface signatures alone are “insufficient to 

capture and control the salient properties of an application”. They point to the need to 

specify “extra-functional”10 aspects, some of which need to be verified at runtime. 

ConFract allows behavioural constraints in the form of executable assertions to be 

specified against interfaces and components. Contracts reify these specification 

assertions and can be updated dynamically. A contract is “a document negotiated 

between several parties, the responsibilities of which are clearly established for each 

provision”. Contracts clearly identify the responsibilities among contract participants so 

that “developers can precisely handle contract violations”. 

                                                 
10 We read this as meaning “non-functional”. Indeed, extra-functional is probably the better term to express 
quality aspects because many of these aspects may have functional impacts, but we have chosen to adopt 
the term non-functional in this thesis because of its common usage.  
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 In ConFract, the specifications made up of executable assertions are expressed in 

CCL-J (based on OCL) and are categorised as Pre, Post, Invariant, Rely and 

Guarantee. These assertions extend Meyer’s (Meyer, 1988) classic assertions for 

interface contracts to include state during execution. Rely is a condition that a method 

can rely on being true during execution. A method can Guarantee that a condition 

remains true. Each assertion category can consist of zero or more clauses.  

 As illustrated in Figure 3-10 above, a ConFract system has a number of different 

types of contract, namely:  

• Interface contracts are established on the connection point between a pair of 

client and server interfaces.  

• External composition contracts located on the external side of each component 

membrane and express the usage and external behaviour rules of the component 

• Internal composition contracts are located on the internal side of the composite 

component membrane, and express the assembly and internal behaviour rules of 

the implementation of the composite component. 

In terms of a contract composition, components are either guarantors or beneficiaries.  

If a contract violation occurs, the guarantor (often the contract controller of the 

enclosing composite) attempts to mitigate the situation by reconfiguring its 

components. Contracts are managed by contract controllers (CTCs) that are located on 

the membrane of every component. CTCs react to events in other controllers – the 

binding, content and life-cycle controllers – to formulate the optimal conditions for its 

contracts. 

 In ConFract the scope of a contract can be the whole component. ConFract 

contracts are thus inherently multi-party, and include both “usage” (interface) and 

“assembly and implementation” (composition) contracts. Composition contracts 

explicitly express the composition rules / behaviour of a composite. ConFract external 

contracts are component-centric. External composition contracts allow behaviour rules 

to be applied to a component independent of its associations. The responsibility for 

performance is not part of the ConFract contract itself (contracts only express 

constraints), but is managed separately by the CTC in the component membrane. In 

ConFract, the component definition (in terms of it external behaviour as defined by its 

external composition contracts) is not a separate (role) entity to its internal composition 

(as expressed by its internal composition contracts). Consequently, replacing a 

component involves the ConFract system generating (if needed) a new specifications 

and contracts appropriate to the new component. Indeed, the ConFract system is 

dynamically built from such contract-based specifications.  
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 In general, the ConFract system is a comprehensive approach to addressing both 

functional composition and non-functional adaptation. This approach is based on the 

dynamic creation of various types of contracts from constraint specifications on 

interfaces and components. However, the complexities of expressing a component 

composition in terms of constraints may make this approach difficult to apply in 

practice. In ConFract, components can be changed by opening and closing contracts. 

Component reconfiguration, as distinct from merely swapping a component, is made 

possible by changing the specification(s). This specification is then used to generate 

new contracts at configuration time. Runtime management utilises interception 

mechanisms provided by the underlying Fractal component platform. 

 Finally, to characterise ConFract in terms of the schema illustrated in Figure 3-9 of 

the previous section, ConFract defines both the structure and quality of interactions. 

However, because interaction control is enforced on the interfaces of the components, 

the structural and quality aspects must be represented in separate contracts; that is, 

respectively, the composition and interface contracts.  

3.7.2. CASA – configuration selection based on application 
contracts 

Contract-based Adaptive Software Architecture (CASA) (Mukhija and Glinz, 2003; 

Mukhija and Glinz, 2005b) provides a framework for enabling the development and 

operation of autonomic applications. As such, the focus of CASA is on adapting to 

changes in the execution environment, such as computational resources. We examine 

CASA here because it also addresses changes in the (mobile) user’s context; a similar 

domain to Aura (Sousa and Garlan, 2003). The key features of CASA are: 

• Separation of the adaptation concerns of an application from its business 

concerns 

• A runtime system for dealing with the adaptation concerns 

• Support for adaptation at various levels of an application  

• A contract-based adaptation policy, facilitating changes in the adaptation policy 

at runtime. 

CASA identifies a number of adaptation techniques that can be classified according to 

the level where the adaptation takes place. These are 

• Dynamic change in lower-level services 

• Dynamic weaving and unweaving of aspects 

• Dynamic recomposition of application components 

• Dynamic change in application attributes. 
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This schema highlights the distinction between the application and its execution 

environment. It also extends the limited view of architecture; namely, as just 

configurations of components and connectors to take account of concerns such as 

security that crosscuts the core functionality (similar to the SMs (Cheng, Huang, Garlan 

et al., 2004) discussed above).  

 The adaptation policy for an application is defined by an “application contract”. 

These contracts are external to the application and can be changed at runtime. They 

define the contexts of interest to the application and a corresponding configuration. 

Each configuration specifies the resource requirements of the configuration, the 

components and aspects of the configuration, the callback methods that perform the 

reconfiguration, and a list of the lower level services related to the configuration.  

 Every node hosting an autonomic application runs an instance of the CASA 

Runtime System (CRS) (Mukhija and Glinz, 2005a). As shown in Figure 3-11 below, 

the CRS monitors the execution environment on behalf of the application, and makes 

any changes needed in the application. Every time the CRS detects a change in the 

execution environment (step 1) it evaluates the application contracts of the running 

applications with respect to the changed state of the execution environment (step 2). 

The CRS carries out any adaptation needed in the affected applications, in accordance 

with the adaptation policies specified in the respective application contracts (step 3).  

 
Figure 3-11: Adaptation steps in CASA Framework (from (Mukhija and Glinz, 2005a)) 

 Depending on the current state of the execution environment (contextual 

information and resources), the appropriate configuration from the application contract 

is selected and activated by the CRS. Adaptive behaviour in CASA therefore consists 

of the selection of the first configuration to match the context requirements on a 
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predefined and prioritised list of configurations in the application contract. These 

contracts can (only) be changed manually by the human user/operator. This provides a 

form of supervisory control of the system. 

 CASA does not provide mechanisms for monitoring of resources itself, but relies 

on the third party middleware. Only computational resources are monitored, rather than 

application behaviour or domain output. Monitoring of the user context is described at 

a very general level, and it is not apparent that this has been implemented. Nor is it 

clear that complex collaborations of a number of applications can be represented or 

implemented. Although the work on CASA describes a broad vision, implementation at 

the time of writing appears limited to configuration selection and swapping in a simple 

prototype.In terms of our schema, illustrated in Figure 3-9, CASA contracts do not 

define the internal structure of an application, but are rather ‘contracts-for-use’ that 

have associated predefined configurations. The interactions controlled by the contract 

are limited to external interactions between the application and its environment (that 

may include other CASA applications).     

3.8. Summary of framework characteristics 
Table 3-1 below summarises the adaptive architectural frameworks reviewed above, 

according to the characteristic identified in Section 3.3 above. Characteristics marked 

with a tick  are clearly addressed, or can be clearly inferred, from the work reviewed. 

Characteristics marked with a cross x are not addressed and it is difficult to see how the 

framework could support such a feature.  Characteristics marked with a tilde ~ are 

partially supported, or else they are not addressed yet it can be reasonably inferred that 

they could be supported by the framework. 

 To be ontogenically adaptive, a framework must provide the capability for 

structural reconfiguration and regulation of interactions. ArchJava has not been 

included in the summary because it is a language extension rather than a framework 

and, as such, does not address management concerns. The Rainbow and ConFract 

frameworks, in particular, go some way towards meeting these requirements.  

However, even with these frameworks, much work needs to be done if a 

comprehensive solution is to be developed. For example, none of the frameworks 

comprehensively address how the integrity of the system is maintained when 

components are swapped. When is it safe to swap a component? How is state 

preserved? How are the costs of reconfiguration evaluated so that decisions can be 

made on the cost versus benefits of restructuring? How is instability (e.g. feedback 

oscillations) dampened when restructuring or regulating the system? Some frameworks 
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also lack desirable characteristics such as a clear separation between management and 

functional entities. Even though a number of frameworks encapsulate these in separate 

entities, inter-dependencies between management and functional entities mean that the 

management structure cannot be superimposed on blackbox components.  Frameworks 

that control the quality of interaction do not incorporate formal techniques for ensuring 

the consistency of the structure.  

 In Part 2 of the thesis, we introduce the ROAD framework and show how it meets 

the requirements of ontogenic adaptation. For comparison, the characteristics of our 

ROAD framework described in this thesis are included in the table. In Part 3, Chapter 

11, we evaluate ROAD in detail with respect to the characteristics in the table.    
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Table 3-1: Summary of the characteristics of adaptive software frameworks 
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1. Configuration          
1.1. Reconfiguration possible at runtime.  x  ~ a  x  ~ b  
1.2. Declarative composition at runtime.  x x x x x  ~  ~ 
1.3. Functionally recursive structure x x ~c ~ ~   x  
1.4. Non-functional restructuring supported ~ x ~ ~ ~ x    
1.5. Elements can be substituted      ~    
1.6. Supports heterogeneous components x ~    x x  d  
1.7. Blind communication  x e x x x x x x x  
1.8. Partial instantiation possible   x x x x  x  
1.9. Formal composition   ~f ~ ~ x  x x 
2. Regulation  g        
2.1. Non-functional regulation possible.  x ~        
2.2. Control dynamics supported.  x x x x ~  x x ~ 
2.3. Utility can be defined arbitrarily x ~ h    ~  x  
2.4. Utility requirements changed dynamically x x x ~  ~ x   
2.5. Type of utility changed dynamically. x ~ x ~ ~ ~ ~ i   
2.6. Multi-dimensional utility supported. x ~    ~    
3. Management          
3.1. Can determine the need for reconfiguration x ~ ~ ~  ~    
3.2. Management as separate entity. x     ~ c x    
3.3. Management exogenous  x ~    j x x x  
3.4. Management distributed   ~ k x ~ l x     
3.5. Management structure not subject to single 
point failure  

 x x  x x x ~ x 

3.6. Separate management structure. ~ m  ~       
3.7. Management can find /select entities  x ~ n  ~  ~ ~ ~ o ~ 
3.8. Management mechanisms superimposed  ~ p x x x x x x x  
3.9. Management is updatable. x  ~ ~ ~ x x x ~ 
3.10. Management is substitutable. x  ~ ~ ~ x x x  
3.11. Supervisory control possible. x x ~ x   ~   
3.12. Costs of reconfiguration estimable.  x x x x  ~ x x x 
4. Other           
4.1. Implementation is apparent.   ~        

 
                                                 
a Only single component  replacement or regulation 
b Contracts can be updated manually at runtime 
c Claims recursion is possible but not evidenced in discussion or examples 
d Subject to creating an ‘application  contract’; external definition of functionality and performance 
characteristics  
e Although it might be argued that the component implementations inside management wrappers are blind 
f The Constraint Evaluator claims to be able to check compositional rules but examples only illustrate QoS  
g Claims this can be provided by third party 
h Design time only 
i Not without redefining and deploying the component 
j Strategy descriptions are component specific, thus endogenous 
k Centralised in one ADL description, distributed runtime 
l Distributed description, centralised action 
m Separate management communication channel but unstructured broadcast 
n Claims to support selection but mechanisms are not described  
o Selection from developer defined list of configurations 
p Only if components are Darwin compliant 
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4   
 
Role-Oriented Adaptive Design  

In the previous chapter we reviewed architectural frameworks for building runtime 

adaptive systems. These frameworks facilitate the construction of applications from 

loosely coupled elements that are then dynamically regulated and reconfigured to 

meet variable environments or changing goals. This part of the thesis, Part 2, 

introduces our Role-Oriented Adaptive Design (ROAD) framework and describes 

the framework at a conceptual level. The description of the implementation of this 

meta-model is discussed in the following Part 3.  

 Part 2 is structured as follows. This chapter gives an overview of the basic 

concepts in ROAD, and introduces an expository example that will be used 

throughout the subsequent chapters to illustrate the features of the ROAD 

framework. The rest of the chapters in this part of the thesis then examine each of 

these concepts in more detail.  

4.1. Basic ROAD concepts 
The basic elements in the ROAD adaptive framework are roles, players, contracts, 

organisers and self-managed composites. In the following overview, ROAD’s 

characteristics are described in terms of the features of adaptive architectural 

frameworks summarised in Table 3-1 of the previous chapter. The specific 

characteristics listed in that table are referenced below by a number in square 

brackets [x.y] where x is one of the subcategories 1. Configuration, 2. Regulation, 

or 3. Management, and y is a label for the adaptive characteristic in the 

subcategory. 
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 In ROAD, software applications are viewed as organisations — goal-driven 

networks of roles bound together by contracts. There is a radical separation of roles 

from the entities that play those roles. Roles can be played by various players 

(objects, components, services, agents, human operators, etc.) [1.6], in much the 

same way as a role in a business structure may be played by various employees, 

departments, or outsourced to external organisations. Similarly, roles in an adaptive 

ROAD application can be played by players within the organisation, or by players 

outside the application’s immediate scope of control. Players can be dynamically 

bound/unbound to roles [1.5] as demands on the application change, as the players’ 

performance varies, or as the environment changes. A player may play more than 

one role, but at any point in time an instance of a role is always the responsibility 

of a single player (there can be many instances of the same role type in an 

organisation [1.4]). Roles may be temporarily unfilled by players [1.8]. In ROAD, 

these roles are first-class runtime entities that can be played by various players at 

different times. Roles, as performed by their players, satisfy their responsibilities to 

the organisation as a whole. Functional roles (as distinct from the organiser roles 

discussed below) are focused on first-order goals; that is, on achieving the desired 

application-domain output. Functional roles and their players constitute the 

process, as opposed to the control, of the system. The difference between a role and 

a player is that functional roles define an abstract function or a ‘position’ within an 

organisation, while role-players “do the work”. This is in clear contrast to the usual 

concept of roles in object-oriented modelling, where a role is a descriptor for one 

end of a relationship. In Chapter 5 we examine in more detail, roles, players and 

their relationship.   

 Contracts associate two roles. They also monitor and regulate interactions 

between the roles. As all roles (as opposed to players) are internal to the 

organisation, ROAD contracts are also internal to the organisation, unlike inter-

organisational service-level agreements. Like roles, instances of contracts are 

runtime entities. All runtime communication between functional players bound to 

the organisation is via contracted roles. If necessary, contracts intercept the 

communications between roles. Contracts define the mutual obligations of the 

participant roles in an organisational context. They define what interactions are 

permissible or required by the participant roles, and can be used to enforce 

sequences of interactions. Contracts can also be used to set arbitrary performance 

conditions on the roles’ interactions [2.3-2.6], and monitor those interactions for 

compliance to those conditions [2.1]. Contracts thus encapsulate both the 
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coordination and the performance management of interactions. Figure 4-1 below 

illustrates the relationships between roles, players and contracts. Contracts are 

further discussed in Chapter 6. 

 
 

 

Figure 4-1: Roles, contracts and organisers from an organisation layer separate from 
players 

 Organisers [3.2] create and destroy roles. They make and break the bindings 

between organisational roles and players (player selection), and create and revoke 

the contracts between the roles. They can thereby create various configurations of 

roles and players [1.1]. Organisers set performance requirements for the contracts 

they control, and receive performance information from those contracts. Organisers 

have reconfiguration strategies they can employ if they detect under-performance 

in the composite they control [3.1]. Organisers are themselves a role-player pair, so 

that various role-players (e.g. Player Z in Figure 4-1) can be dynamically bound to 

the organiser role [3.9-3.11]. These organiser role-players may be of varying 

capability. In short, organisers provide the adaptivity to the application by 

managing the indirection of association and instantiation (as discussed in Chapter 

2). Organisers, along with the contracts and roles that they control, can be viewed 

as a management layer that composes and controls the interaction of the functional 

role-players [3.6]. This management layer can be superimposed on to pre-existing 

players/components [3.3, 3.6, 3.8]. 

 Each organiser is responsible for the configuration of a set of roles and 

contracts. We call such configurations self-managed composites. Each self-

management composite has an interface (membrane) that defines its potential 

interactions with the external environment, and exactly one organiser role [3.4] that 
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manages it internally. We call these regulated clusters of roles “self-managed 

composites” because each composite attempts to maintain a homeostatic 

relationship with its environment and other composites. In terms of a management 

analogy, a self-managed composite in a business organisation would be a 

department (e.g. manufacturing department).  

 Such managed composites are themselves role-players that perform definable 

domain functions (roles) within higher-level composites [1.3]. A role-based 

organisation is built from a recursive structure of self-managed composites. This 

structure is coordinated through a network that connects the organiser roles of each 

of the composites. The network of organiser roles and the contracts they control 

constitute a regulatory management-system. Organisers, self-managed composites 

and the management system are discussed in detail in Chapter 7. 

4.2. Expository example 
To illustrate how role-based coordination can be used to create adaptive software 

systems, we will use the example of a mixed-initiative (Horvitz, 1999) automated 

manufacturing production system. Let us consider a highly simplified 

manufacturing department that makes widgets. This department has an 

organisational structure consisting of a number of different roles that perform 

different functions (the rounded rectangles in Figure 4-2 below). These roles are 

Foreman, ThingyMaker, DooverMaker and Assembler (who assembles thingies 

and doovers into widgets). The Foreman’s role is to supervise ThingyMakers, 

DooverMakers and Assemblers and to allocate work to them. The 

WidgetDepartment also has a manager role (an organiser) that is responsible for 

creating roles in the department, for creating the associations between the various 

functional roles, and for assigning entities to play those roles. The 

WidgetDepartment is, therefore, a composite of these roles and the players who 

perform them.  

 Contracts associate roles. The only way two roles can communicate is via a 

contract. For example, the mutual obligations of roles of type Foreman and 

ThingyMaker are captured in a Foreman-ThingyMaker contract type. As shown in 

Figure 4-2, the control relationship between a Foreman and a ThingyMaker 

conforms to a Supervisor-Subordinate pattern, with the Foreman being the 

supervisor of the subordinate ThingyMaker. In ROAD this reuse of control patterns 

is implemented by having the Foreman-ThingyMaker contract class inherit its 

interaction patterns from an abstract Supervisor-Subordinate contract. As systems 
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become more open, the components, agents or services that play roles are not 

necessarily well-tested or well-trusted. Interactions between roles (as player 

proxies) therefore need to be actively controlled. The runtime control that a ROAD 

contract imposes is a way of ensuring that interactions between the roles are 

appropriate to the organisational requirements, and that the players bound to the 

organisation are well-behaved.  

 

 
Figure 4-2: Organisational chart of Widget Department 

 The organisational chart in Figure 4-2 is of an abstract organisation, in that it 

shows classes and class relationships, rather than instances of roles, contracts or 

players. When a composite organisation is instantiated, instances of the roles and 

contracts are created, and player instances are bound to (some or all) of those role 

instances. A diagram of an instantiated WidgetDepatment (wd) is shown in Figure 

4-3 below.  

 The roles in our WidgetDepartment can be performed by a variety of 

heterogeneous players. Players can be software objects, components, agents, 

external services, machine controllers, or humans interacting with the application 

through a user interface. Or players can themselves be composites of roles and 

players. In our example, the thingies are produced by machines that interact with 

the application through controller components; doovers are outsourced from an 

external supplier via a Web Service interface; assembler players are interactive UI 
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components that require human employees, who do the physical assembly, to 

record their work; and the foreman is an automatic work scheduling component 

that has been provided by the Company’s legacy scheduling software. This 

WidgetDepartment (wd) is itself a role-player that plays the WidgetMaker role 

instance (wm) within the broader ManufacturingDivision of the Company.  The 

WidgetDepartment composite-player only interacts at a functional level with its 

WidgetMaker role in this context (blind communication [1.7]). Note that, as a 

player, the WidgetDepartment is a fully separable component from the enclosing 

Manufacturing Division composite, and might always be replaced by another 

player that can fulfil the WidgetMaker role.  

 In Figure 4-3, the functional and non-functional requirements of the 

WidgetMaker role are defined in contract C1. The WidgetDepartment’s organiser-

role (wdo), that is played by op1, creates, monitors and controls the contracts (C2a, 

C2b, C3, …) between functional roles (f, tm1, tm2, a1, …), and binds players (p1, 

p2, p3, …) to those roles.  

 
Figure 4-3: Exploded view of nested self-managed composites (not all roles and 

players shown) 
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 Players will vary in their capability to perform a role. Capability has both 

functional and non-functional aspects. To be able to perform the role at all, the 

player must meet the functional requirements of the role; that is, it must be able to 

meet the goals and perform the tasks allocated to the role. But the player will also 

have to meet non-functional requirements such as speed, accuracy, reliability and 

so on. In conventional object-oriented design, all objects of the same type are 

treated as having identical capability and behaviour. However, in a more open 

system such as our WidgetDepartment, we cannot assume that all players of, say, 

the role ThingyMaker will have the same capabilities. For example, some types of 

ThingyMaker machine may be faster, more accurate, or more costly than others. 

Even if the machine-players are of the same type, instances of that type may be 

running in different contexts that affect their relative performance with respect to 

their roles. One player may be better connected, better resourced, better 

maintained, available more often, etc. than other players of the same type. 

 An adaptive system must respond to changes in the requirements of the 

system, or changes in the environment, or both. The Widget Department needs to 

be able to cope both with changes in the demand for its widgets, and with changes 

in the capabilities/availability of its players. For example, orders flowing into the 

department to make new widgets might increase, such that they exceed the capacity 

of the department to manufacture them. Or, one of the ThingyMaker players may 

become unavailable, unreliable or too costly. It follows that there must be a 

representation of the non-functional requirements of each of the roles in the Widget 

Department, and a way of measuring whether or not the players of those roles are 

meeting those requirements. 

 As a role-based organisation structure, the Widget Department has two basic 

adaptive strategies available. Firstly, it can restructure the relationships between the 

roles in the Department. For example, an additional ThingyMaker role (and player) 

could be added to cope with an increase in demand as shown in Figure 4-3 (i.e. 

non-functional restructuring [1.4]). The second strategy is to replace a player with 

an alternative player that better matches the required capability (e.g. player p5). For 

example, the production of thingy parts might be outsourced to a third-party 

service. The appropriateness of these adaptation strategies needs to be evaluated in 

order to mitigate any gap between required and actual performance. The organiser 

role must also have a means of enacting that strategy.  



Chapter 4   Role-Oriented Adaptive Design 75 

 

 A ROAD application is built from a recursive structure of self-managed 

composites. Apart from the functional interactions that flow through contract and 

roles, this structure is coordinated through a network that connects the organiser 

roles of each of the composites. This network of organiser roles constitutes a 

management-system that is separate from the functional system. In our 

manufacturing business, information on non-functional requirements, capacity and 

constraints (e.g. financial constraints) flows over this management network. 

Depending on the capability of organiser players, this information can be used to 

plan changes to the system (VSM model’s Adaptation and Planning subsystem 

(System 4) as discussed in Chapter 2). 

* * * * * 
In summary, there are a number of capabilities that a role-based system needs if it 

is to be adaptive at runtime to both changes in requirements and to changes in the 

operating environment. These capabilities include the ability to represent 

requirements; to measure the performance relative to those requirements; to 

evaluate strategies for adaptation; to restructure relationships between roles; to 

select appropriate players for those roles; and the ability to control the interactions 

between players via those roles. In the following chapters we will show how the 

ROAD framework meets these required capabilities. 



 

 

5  
 
Roles and Players  

In its general usage the concept of a role defines the relationships of an individual 

within a particular social context (Steimann, 2000). In this thesis, we are concerned 

with software systems in which social contexts are intentionally designed and 

structured. As discussed in Chapter 2, we call such contexts organisations, where 

organisation refers to both the relationship of roles in the system, and the processes 

that maintain the viability of these relationships in response to changing goals and 

changing environments. Roles are the nodes of designed organisational structures.  

 In this chapter we define the characteristics of ROAD organisational roles and 

players, and contrast ROAD roles with other views of roles found in the literature 

on software modelling and design. The chapter provides a rationale for our 

approach to roles, and is structured as follows. Section 5.2 is a brief discussion of 

the various conceptions of roles in software development methodologies. In 

particular, we examine whether methodologies use roles merely as an 

analysis/design concept, or whether the role is reified as an implementation entity. 

We argue that to create adaptive role-based software organisations, roles need to be 

reified. Section 5.3 addresses the following questions. If roles are implementation 

entities, to what degree are roles and their players separate? Do roles have an 

independent identity? Can a role exist independently from the role player? We will 

briefly examine the various methodological responses to these questions, and point 

to the need to radically separate roles from players in organisational structures. We 

propose that role identity should be organisation-centric, rather than player-centric. 

In Section 5.4 we define the essential properties of both roles and players within an 

adaptive organisation. If we want to design and implement an explicit 
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organisational structure, what properties will be needed in the roles that make up 

that structure? Consequently, what general properties will be needed by the players 

who play such organisational roles? We then introduce some issues that arise from 

the radical separation of roles and players. The subsequent sections of the chapter 

address these issues. In Section 5.5 we propose a novel conceptual framework 

based on the autonomy permitted by the role and the capability of the player. 

Players in different roles within a software organisation may be very heterogeneous 

(objects, components, services, agents or humans), and have very different degrees 

of autonomy and capability. We then examine various implementation strategies 

for defining role-players with various levels of autonomy. Possible solutions to this 

problem are discussed and related to object-oriented and agent-oriented 

approaches. Section 5.6 proposes that players should use “blind communication” in 

order to make organisations more adaptable through maintaining the separation of 

structure and process. Section 5.7 discusses the problem of the preservation of state 

in role-based organisations. 

5.1. Roles as design and implementation entities  
Roles are a recurring concept in both object-oriented and agent-oriented 

methodologies, not to mention data-modeling (Steimann, 2005). In these 

approaches roles may appear as concepts at the analysis and design stages, but are 

not necessarily implementation entities as they are in ROAD.  

 In conventional object-oriented methods, roles have figured as an annotation 

on the relationship between objects. In UML, roles are a descriptor for the ends of 

an association between classes (the concept of role has been subsumed by the 

concept of ConnectorEnd in UML 2.0 (Object Management Group, 2004)). In 

some methods, such as OOram (Reenskaug, 1996), roles are central concepts to the 

analysis and design. In OOram roles are nodes in an interaction structure (role-

model). These role-models can be based on any suitable separation of concerns. 

Responsibility-driven design (RDD) also focuses on collaborations between roles, 

but such contracts between roles are seen as “really meaningful only in the 

programmer's mind” (Wirfs-Brock and McKean, 2002). In such approaches, roles 

are used in the modelling and to inform the design, but disappear as entities during 

implementation. 

 Other approaches based on role and associative modelling define roles as first-

class design and implementation entities (Kendall, 1999a; Kristensen and Osterbye, 

1996; Lee and Bae, 2002; Fowler, 1997; Bäumer, Riehle, Siberski et al., 2000). 
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Fowler (1997) discusses the implementation of roles in object-oriented design 

using a variety of object-oriented patterns. Kendall (1999b) has shown how 

program aspects can be used to introduce role-behaviour to objects. In Kendall’s 

approach, roles are encapsulated in aspects that are woven into the class structure. 

Such approaches see roles as encapsulated implementation entities, but they vary as 

to whether roles can exist independently from the objects that play them. In 

common with the approach in this thesis, a number of object-oriented frameworks 

and languages that treat roles as first class entities have been developed (Baldoni, 

Boella and van der Torre, 2005b; Colman and Han, 2005a; Herrmann, 2002). 

These are discussed in more detail below. 

 Roles also figure in a number of agent-oriented approaches (Juan, Pearce and 

Sterling, 2002; Ferber and Gutknecht, 1998; Odell, Parunak, Brueckner et al., 

2003; Zambonelli, Jennings and Wooldridge, 2000). Gaia in particular, 

(Zambonelli, Jennings and Wooldridge, 2003) extends the concept of a role model 

to an organisational model. Like some object-oriented approaches, roles are not an 

implementation entity. For example, in Gaia role models are developed at the 

analysis and architectural design stages, but roles are mapped to agents (not 

necessarily on a one-to-one basis) during the detailed design stage. Other agent-

based models (Odell, Parunak, Brueckner et al., 2004) see roles as a key modelling 

concept but, being implementation-independent, these models give no indication of 

how these roles are to be realised. In general, if an agent-oriented methodology 

only has agents available as implementation entities, then it will lack the 

expressiveness to explicitly represent roles in an organisational structure.  

 As our aim is to create explicit organisational structures at the code level, we 

require roles that can be created and manipulated as implementation entities.  

5.2. Two perspectives on roles – player and 
organisation 

Kristensen (1996) defines the characteristics of roles in object-oriented modelling. 

These include: 

• Dependency: a role cannot exist without an object 

• Identity: an object and its role have the one identity 

• Visibility: the visibility and accessibility of the object (a.k.a. player) is 

restricted by the role 

• Dynamicity: a role may be added or removed during the lifetime of an object 
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• Multiplicity: several instances of a role may exist for an object at the same 

time 

• Abstractivity: roles can be classified and organised into generalisation and 

aggregation hierarchies. 

The above characterisation of a role has been widely adopted in the object-oriented 

literature, if not object-oriented practice. Roles can be implemented as runtime 

entities and yet have no independent identity or separate existence from their 

players. For example, Kendall (1999a) and Kristensen (1996) encapsulate roles as 

implementation entities but allow them no existence separate to the objects to 

which they are bound. While roles exist as a class, they can only be instantiated 

when bound to an object. Steimann (2000) provides a useful overview of 

approaches where roles are seen as adjuncts to object instances. Roles are seen as 

clusters of extrinsic members of an object. Such roles are carriers of role-specific 

state and behaviour but do not have an identity. 

 All the above approaches are object-centric or player-centric. The object is 

seen as the stable entity to which transient roles are attached. The identity of the 

role is an adjunct to the identity of the object. The role of an object is not an 

independent entity, but its appearance in a given context (Steimann, 2000).  

 An alternative perspective, which is adopted in this thesis as well as in 

Baldoni (2005b) and Herrmann (2002), is to look at roles from an organisation-

centric viewpoint. From this perspective, a role’s identity and existence derives 

from the organisation that defines the roles and associations – not from the player 

itself. This dependency of a role on a group is also apparent in some agent-oriented 

approaches (Odell, Nodine and Levy, 2005). Roles are the more stable entity 

within the organisational structure and transient players are attached to these roles. 

A role instance may be played by different players at different times (although not 

simultaneously). In an organisation, there is generally no restriction on a single 

player playing multiple roles.   These two perspectives are illustrated in Figure 5-1 

below. 
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Figure 5-1: Player-centric and Organisation-centric perspectives on roles 

 The organisation-centric view of roles accords more with the characteristics 

of roles in human organisations, such as a bureaucracy or a business. We call such 

roles functional roles, as they are part of the domain process (as distinct from 

management) of the organisation. The network of these roles is the basis of the 

organisational structure. If functional roles are nodes in an organisational structure, 

then a role may have associations a number of other roles of various role-types. A 

functional role may therefore consist of a number of interfaces – one for each of its 

associations with other roles. This is a different view from a conventional object-

oriented view of a role: as a descriptor for one end of a single association1.  

 A functional role instance is a “position” to be filled by a player (Odell, 

Nodine and Levy, 2005). There may be multiple role instances of the same type 

within an organisation. Role instances may be temporarily unassigned to players. 

For example, if an employee (player) resigns from their role as Production 

Manager within a manufacturing business, the role does not cease to exist. That 

position (role) within the company structure may be temporarily unassigned, but 

the company may continue to function viably in the short term. Orders can still be 

taken, current work orders still be manufactured, finished goods can still be 

shipped, accounts can still be processed and so on. Nor does the identity of the role 

depend on the identity of the player. From the organisation’s point of view it does 

not matter whether employee John Doe or Jane Smith performs the role of 

Production Manager as long as they both have sufficient capability. In a viable 

organisation the role model (organisational structure) is not just a design concept 
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that helps structure the relationships between employees (players). It is also a set of 

relationships between roles that is maintained and manipulated (to some degree) 

independently from the players that are assigned to those roles. The ability to 

dynamically bind different players to a role gives the organisation a degree of 

adaptability in meeting changing goals and environments.  

 Organisational roles therefore can be thought of as having a number of states 

in relation to the binding with a player. An instance of a role can either be assigned 

a player or left unassigned. As Odell et al. (2003) point out, the relationship 

between a role and an assigned agent may also be in an active or suspended state 

(e.g. our Production Manager has gone to lunch and although she is not active in 

her role, she still occupies that position).  

 To summarise the characteristics of functional roles within an organisation, 

Kristensen’s characteristics of Dependency and Identity do not hold (the other 

characteristics are still applicable). We can modify Kristensen’s characteristics of 

roles as follows: 

• Existence independent of player: Role instances in an organisation do not 

depend on players for their existence. They depend on the organisation for 

their existence.  

• Independent identity: Role instances have an organisational identity that is 

independent from their players even though the role and player act as a unity 

within the organisation. 

The separation of organisational roles from the entities that play them, allows the 

definition of abstract organisational structures that are independent of particular 

players. Such a structure in a human organisation would be described, for example, 

in a company’s organisational chart where the nodes are the roles in the company 

and the arcs are the authority relationships. However, the radical separation of roles 

from role-players introduces the problems of how to define the dividing line 

between extrinsic (role) and intrinsic (player) properties in the combined role 

playing entity, and how to preserve the integrity of the organisation’s processes 

when players are swapped. We address these issues in the following sections. 

                                                                                                                            
1 ROAD does characterise the ends of associations between functional roles as “performative” roles. 
However, because these roles are properties of the functional role-role association, we discuss them in 
the next chapter on contracts. 
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5.3.  The properties of roles and players in adaptable 
organisations 

In ROAD, we conceive of the role as expressing a function that serves some 

purpose in the organisation. It defines what the role-player needs to do at some 

level of abstraction, and defines the provided and required relationships with other 

roles. It may also define a relationship to tools and resources. The player, on the 

other hand, initiates actions in line with its capability to perform the defined role. 

The player has intrinsic properties that gives it this capability. This concept of the 

intrinsic nature of player capability is common to both object-oriented (e.g. the 

“core object” in (Kristensen and Osterbye, 1996)), and agent-oriented (e.g. “agent 

physical classifier” in (Odell, Nodine and Levy, 2005)) approaches. 

 Let us illustrate the separation of properties between a role and a role player 

with an example from an organisation made up of people – a coffee shop business 

that has a role of coffee-maker2. The organisational context (the coffee-shop 

business) of this role is illustrated in Figure 5-2 below 

 

 
Figure 5-2: Organisational Chart with players 

 The coffee-maker role might be defined as follows. The goal of the coffee-

maker role is to make quality coffee to a certain standard within certain time 

constraints, in response to requests from waiting staff. The role defines work 

instructions for preparing the coffee to the business’ standard. The role also gives 

access to resources such as the expresso machine and ingredients, and it defines 

                                                 
2 We temporarily depart from our Widget Department example, because the author knows more about 
making coffee than he knows about making thingies or widgets. 
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functional relationships with other roles in terms of what is provided and required. 

It also defines authority relationships with other roles in the business. For example, 

the coffee-maker is subordinate to the shift manager, peer to the waiting staff and 

so on. These authority relationships define the valid types of control 

communication that can pass between actors playing the respective roles (e.g. 

unlike a shift manager, a waiter cannot tell a coffee maker to finish their shift). A 

role has (explicitly or implicitly) a “position description” that describes the 

capabilities needed of a player assigned that role.  In order to effectively 

play the role of coffee-maker, an employee (or rather a person playing the role of 

employee which is itself a generalisation of the coffee-maker role) needs to be able 

to follow work instructions, use the tools provided to transform the ingredients as 

required, and communicate with other role players following the conventions 

imposed by the authority relationships between the role types.  

 In general, an organisational role has the following properties.  

• The function of the role expressed in terms of purpose, system-state, or 

process descriptions (depending on how detailed the level of prescription in 

the role and how much autonomy the player is able to exercise). 

• Performance requirements for executing its functions are a property of the 

relationship of the role with its enclosing organisation, rather than an 

essential property of the role itself. Such performance criteria are set by the 

organisation. Actual performance of a role is always an externally measured 

property of an assigned role (player-role pair) because different players may 

have varying capability in performing the role. As performance of a role-

player pair is always in relation to its organisation, it is therefore appropriate 

to represent performance as the property of a relationship with the 

organisation, perhaps as represented by other roles in that organisation. In 

our ROAD framework, the performance level with respect to non-functional 

requirements is recorded in contracts that associate roles (as described in the 

next chapter). 

• Interaction protocols and authority relationships (power, expectations and 

obligations) with respect to other roles within the organisation and with 

external entities with which the organisation has associations. 

• Access to, and restrictions on, resources controlled or owned by the 

organisation. 
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The above properties are fundamentally properties of the role’s relationship with its 

organisation, i.e. its composite, other roles, and resources in the organisation. The 

role description is an aggregation of the properties derived from its relationships. 

From the perspective of a role player, this aggregate description is a definition of 

the knowledge and skills required in a player to enable performance of the role 

function. This is an interface definition with both functional and non-functional 

requirements. A role player needs to be able to execute the function defined in this 

interface at the specified level of performance and while meeting any other non-

functional requirements it defines.  

 A role and its player act as a unity within the organisation, even though roles 

within an organisation have an existence and identity independent from their 

players. If we separate functional roles from the players who play them, what 

properties are ascribed to the role and what are the properties of the player? In 

particular, if we are to implement roles as first-class entities in a runtime 

organisation, a number of issues arise from the radical separation of roles and 

players. These issues relate to the division of responsibility between roles and 

players, namely: 

• What level of autonomy do players have in fulfilling their role? Do roles 

“do” anything? 

• Does knowledge of the organisational structure reside in the role, player or 

both? 

• Are the roles or are the players responsible for maintaining state within the 

organisation? 

 The following sections discuss these issues and various strategies for the 

implementation of roles. The purpose of this discussion is to evaluate some of the 

alternative ways organisational roles might be implemented, in order to provide a 

rationale for the way roles have been implemented in ROAD.  In particular, we will 

(where appropriate) illustrate these issues by comparing and contrasting how they 

have been implemented in three different approaches to creating role-oriented 

software organisations. These are powerJava (Baldoni, Boella and van der Torre, 

2005c; Baldoni, Boella and van der Torre, 2005b), ObjectTeams (Herrmann, 2002; 

Herrmann, 2005), and our Role-Oriented Adaptive Design (ROAD) framework. 
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5.4. Levels of player autonomy 
Complex systems can comprise heterogeneous players with varying capabilities. 

Such players operationalise the requirements defined in the roles. The level of 

operational detail at which these requirements are expressed may vary depending 

on the amount of autonomy that the organisation allows the player, and 

consequently on the capability of the player to act with some appropriate level of 

autonomy. Returning to our example of a coffee-maker, the work instructions for 

making coffee may vary in terms of their level of detail. Inexperienced coffee-

makers may require detailed instructions on how to make a cup of coffee, while an 

experienced and capable coffee-maker may not need to follow instructions defined 

by the role but may just be given a system-state (“strong cappuccino”). This 

experienced coffee-maker may alter the process depending on the inputs (“the 

coffee-maker perceives the beans to be a darker roast than usual”). 

 As can be seen from the above example, the granularity of the descriptions of 

the task contained in a role may vary depending on the autonomy granted to the 

player. Intentional action can be described at various levels of abstraction on a 

means-end (intentional) hierarchy as shown in Figure 5-3 below.  

 

 
Figure 5-3: Shifting boundary between roles and players on an intentional hierarchy 

 In an intentional hierarchy, goals are operationalised at successively lower 

levels of abstraction, while the purpose of a function at one level of abstraction can 

be determined by referring to higher levels of abstraction. At its most abstract 

level, the role to be performed may be described by a purpose or goal in the 
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environment external to the role or organisation (“keep the customer’s happy by 

making good coffee”). At a more detailed level, the means to achieving the goal of 

the system might be described as a state of the system itself (“make a coffee to 

standard X”). At the next level of operationalisation, the process for achieving that 

state would be described by the role (“follow the coffee-making work-

instructions”). Such work instructions could then be described by the role at 

progressively more detailed granularity. 

 At some point the atomic goals / states / processes must be interpreted and 

executed by the player. In this sense, the relationship between role and player is 

more like the relationship between program and abstract machine, than between 

two components at the same level of abstraction. In an organisational context, the 

amount of autonomy that a player can exercise in a role is defined by the 

organisation rather than the player. Based on the above intentional hierarchy, 

we can identify five levels of player autonomy. Ordered in terms of increasing 

player autonomy, these are: 

1. No autonomy – player executes the process defined in the role 

2. Process autonomy – player can choose the process to meet the system state 

defined in the role 

3. System-state autonomy – player can choose a system state and processes to 

fulfil a goal defined by the role 

4. Intentional autonomy – player can choose if it will fulfil a goal/state/process 

defined by the role  

An additional level of autonomy can be identified, although it is not one defined by 

the role, that is:  

5. Autonomy from constraints – player can violate constraints defined in the role.  

 As the role is organisationally defined, the intention or purpose of the role is 

always defined external to the player (i.e. it is implicit in the role itself). On the 

other hand, the process is always executed by the player. In this conception, unlike 

the player-centric view of role, the role does not execute any domain function. In 

the following sections we will discuss each of these levels of autonomy and 

possible strategies for implementing such roles in software.  
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5.4.1. Players with no autonomy 
A player with no autonomy is told what actions to execute and always attempts to 

execute them. In our coffee shop example, the role contains detailed work 

instructions that define the process to be followed when executing a role task. The 

purpose and the system-state of the role are implicit as indicated by the dotted 

boxes in Figure 5-4 below. The implicit purpose and system-state have been reified 

into the process instructions by the role designer. In a static role definition there is 

no runtime translation from the role’s intention to system-state, and from the 

system-state to process.  

 

 
Figure 5-4: Alternative 1: Separation between role and player where player has no 

autonomy 

 However, the performance of the role can vary depending on the execution 

context provided by the player. For example, in our coffee shop, different 

employees are able to make coffee at different rates. Where the process is defined 

entirely in the role, as in Figure 5-4 above, the player can be viewed as an abstract 

machine that executes the process provided by the role. The role-player pair acts as 

a single entity executing in a particular environment. Such environments may have 

various computational characteristics. Roles performed by different players 

(computational contexts) may consequently have different observed performance. 

In terms of organisational dynamics, changing the role player is changing the 

machine on which the role is executed. The role identity does not change, nor does 

its functional relationship to the rest of the system change. 

 An alternative approach to implementing players that make no process 

decisions is to have the process interface defined in the role, but the process 

statically implemented in the player, as illustrated in Figure 5-5 below. This is the 

approach we have adopted in the ROAD framework. All domain-function is 

executed in the players. The role is an object that defines required and provided 

interfaces that express the properties defined above in Section 4. The role 

receives/sends messages from/to other associated roles via contracts; buffers in-

coming messages (if a player is not currently active in the role); and delegates in-

coming messages to the player. In ROAD, roles are always composed into self-
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managed composites under the control of an organiser. Power to act within the 

composite is conferred by its organiser who creates contracts between the roles. 

 
Figure 5-5: Alternative 2: Player as execution context and single process 

Other role-based organisational approaches allow the splitting of domain-function 

between the role and the player. powerJava (Baldoni, Boella and van der Torre, 

2005a) extends the object-oriented paradigm and Java programming language with 

a pre-compiler to implement organisational roles. Institutions (like ROAD 

composites) define roles that are played by players. However, in powerJava, unlike 

ROAD, roles themselves perform domain-functions and institutions maintain 

domain state. Institutions give ‘powers’ to the object playing the roles, rather than 

having roles statically defined within an institution. Likewise, in Object Teams 

(Herrmann, 2002) domain-function can be split between a role and a player (base-

object). However, Object Teams does not support adaptivity through indirection of 

instantiation: once a role-object is created the link to its base-object (player) cannot 

be changed. 

 An advantage of having all domain-processes defined in the player is that the 

role structure (organisational composite) remains a purely management abstraction. 

The player can be of any type (object, component, Web service, agent, or back-end 

of a user interface) as long as the player conforms to the role interface.  

5.4.2. Players with process autonomy 
A player with process autonomy is given a task to perform in the form of a system-

state, but it has some autonomy in deciding what steps are executed in order to 

achieve that task. The player must have the ability to translate a system-state 

provided by the role into a process which it can execute. If this system-state is 

variable then the player may require deliberative capability to effectively perform 

this translation. On the other hand, translation from the role’s purpose to system-

state is implicit – that is, carried out by the programmer when the role is designed.  
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Figure 5-6: A player with process autonomy must be able to translate a system-state to 

a process, then create or choose appropriate the process given constraints 

 Where a role provides only a system-state to be achieved, rather than a 

detailed process to be executed, the player must contain the process definition(s) to 

achieve the goal. From a viewpoint external to the player (that is, from the role’s or 

organisation’s perspective) the process is hidden, thus the player has apparent 

autonomy. If the role is subject to environmental perturbation (for example, 

changing availability of resources) the player may require some deliberative ability 

to decide what process is the most appropriate one to achieve that system-state. 

 Alternatively, rather than the process definitions being stored in the player, a 

role may also contain pre-defined process plans from which the player selects. 

Such a player might, for example, be implemented using a BDI agent with a range 

of plans that can be applied to differing situations and system-states. As with all 

other types of player, players with process autonomy are performing the role within 

a computational context that determines the performance of the role-player. Player 

performance cannot be fully characterised independent of their context, because 

they are situated entities. However, while actual performance is always related to a 

situated role-player pair, representations of both the role performance 

requirements, and the player performance capability, are probably necessary to 

enable the selection of appropriate players for particular roles. 

5.4.3. System-state autonomy 
A player with system-state autonomy is given an external goal which may be 

satisfied by a number of states. A software example of system-state autonomy 

would be an operating system that maintains processing capacity by deciding the 

run-time priority of processes. A number of states could satisfy this goal and the 

player must choose between them. 
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Figure 5-7: A player with system-state autonomy must be able to translate a role’s 

purpose into a suitable system-state, and then into a process 

 At the top-most levels of an organisation, players may need to determine the 

appropriate system-states that best satisfy the role’s purpose, given a range of 

variable internal and environmental constraints. In closed systems, where there is a 

manageable finite number of system-states (possibly pre-defined states or states 

defined by a limited set of parameters), it might be possible for a player to have the 

capability to evaluate these alternative states and select the one that best matches 

the role’s goal. However, in more open environments, where there are a large 

number of constraints, it is difficult to automate such capability. Such a role would 

be typically played by a software developer at design-time, or by a human operator 

at run-time. These players need the perceptual capability to identify relevant 

constraints; to devise appropriate system-states; to be able to model the effect of 

various states on the role’s purpose; to determine the best system-state by trading 

off costs and benefits; and to devise the processes to realise these states.  

 Such capability is often required of a human player interacting with a system 

in a supervisory role; for example, in a mixed-initiative control system (Horvitz, 

1999). Providing a role interface to all players allows us to construct systems that 

have a consistent architecture based on roles, regardless of whether the players are 

fully automated machines, or are humans using a user interface. In many control 

systems, automated control can cope with anticipated perturbations. However, 

when unanticipated conditions occur, human operators must replace machines as 

the role players (Rasmussen, Pejtersen, and Goodstein, 1994). By abstracting roles 

from players, systems can be developed that better enable this transition. 

5.4.4. Players with intentional autonomy 
The purpose of the role is organisationally defined — it is implicit to the definition 

of the role. From the organisation’s viewpoint its players should not exercise 
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intentional3 autonomy; i.e. they should not have the discretion to decide which 

organisational goal to adopt. A player with intentional autonomy is a free agent 

with the ability to decide whether or not to satisfy external goals — it has (or we 

ascribe to it) its own intentions. However, players may play roles in a number of 

social networks or organisations (or even multiple roles in the one organisation) 

which can lead to conflicts in priorities and the allocation of resources as shown in 

Figure 5-8 below. 

 A cooperative entity will fulfil the request if it can. A competitive entity only 

does so if it receives sufficient reward. In the software domain, proactive software 

agents might exhibit intentional autonomy. Cooperative agents attempt to 

collaborate to achieve system level goals, whereas competitive agents in a market-

based system attempt to maximise their own utility.  

 

 
Figure 5-8: Organisation and individual purpose may have to be resolved by a player 

with intentional autonomy (a free agent) 

In these cases, the players need some mechanism for prioritising these conflicting 

goals, and some way to form an intention to achieve a system-state. Negotiation 

between the player and the organisation about the level of service provision might 

also be necessary.   

5.4.5. Players with constraint autonomy 
A player that exhibits constraint autonomy is prepared to violate constraints, norms 

or even rules, in order to achieve its goals. For example, a greedy software agent 

may take no account of the computational resources it consumes. A malicious or 

anti-social agent may deliberately try to harm other agents or the system 

                                                 
3 We use the word “intention” in the general sense to indicate goal-directed agency as in Dennett 
(1987) and Searle (1983), rather than in the limited BDI sense (Georgeff, Pell, Pollack et al., 2002) of 
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environment itself. Well run organisations should generally avoid assigning roles 

to greedy or malicious players. If the use of such players is unavoidable, their 

behaviour has to be tightly controlled. Badly behaved players that can exhibit 

autonomy from constraints might also be used in organisations provided all their 

interactions with the organisation are controlled. This is the case in the ROAD 

framework, where all player interaction is via their roles, and all interaction 

between roles is controlled by contracts. These contracts can be used to ensure the 

player does not violate organisational constraints. In addition, the contracts can 

monitor (although not enforce) the performance of the player. 

5.4.6. Capabilities required of players with different levels of 
autonomy 

Given this conceptual framework we can now define the generalised capabilities 

that are needed by players to exercise the level of autonomy defined by the 

organisational role. 

Table 5-1: Level of capability needed for players with different level of autonomy 

Level of 
Autonomy 

General Player Capability Needed 

No autonomy Ability to communicate, follow instructions and effectively use tools 
and resources provided by the role. The instructions will be 
‘interpreted’ by the player and then executed.  

Process 
autonomy 

above + ability to select appropriate processes and tools to complete 
prescribed tasks 

System-state 
autonomy 

above + ability to sense the environment, to determine which state best 
fulfils the goal defined by the role in the current environment given the 
tools and resource available 

Intentional 
autonomy 

Players of roles defined by a closed organisation do not have intentional 
autonomy with respect to their role. The intention of the role is defined 
by the organisation. However, conflict may arise if the player is playing 
more than one role. In a more open organisation (where players may 
belong to other organisations), conflicts may arise between competing 
goals. Such a ‘free agent’ player would need the ability to negotiate 
with the various organisations to which it belongs to try and achieve 
optimal outcomes.  

Constraint 
autonomy 

Players that exhibit constraint autonomy should not be bound to roles in 
organisations, unless appropriate constraints can be imposed on the 
interactions of the player with the organisation. 

  
                                                                                                                            
an “intention to act” i.e. the selection of a particular course of action. Intention in our usage is more 
like the “Desire” in BDI.  
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 In  (Colman and Han, 2005b) we argue that to create a viable organisational 

structure that can achieve system level goals in a complex environment, different 

role players must have varying degrees of autonomy. Players need capability 

commensurate with the complexity of their respective environments as defined by 

their role. Mintzberg (1983) has shown that in human organisations, the higher the 

role’s level in the organisational structure, the less formalised and standardised the 

behaviour required of that role. The higher the role is in the hierarchy, the more 

autonomy and capability that player needs to be able to adapt to environmental 

perturbations. For example, players with no autonomy cannot be expected to cope 

with highly variable environments given only fixed work instructions. However, 

autonomy comes at a cost. While a player with system-state autonomy can always 

perform a highly routinised role, it is not an effective use of resources, particularly 

if the player has to perform computationally expensive scans of the environment.  

 Given the diversity of player types that can participate in a ROAD application, 

the ROAD framework does not define a general format for the interface between a 

role and a player. As a minimum provided and required functional interfaces need 

to be defined in a role’s ‘position description’. Any non-functional attributes will 

also need to be expressed in this interface. Much recent research has been done to 

define such “rich” interfaces, e.g. (Han, 1998; Han and Jin, 2005). Furthermore, if 

players (e.g. agents) are to be developed as general purpose role-executors, rather 

than being designed for particular roles, they will need the ability to read and 

interpret these role ‘position descriptions’. 

 If heterogeneous players are used, the framework should be extensible so that 

a new type of player can be added. Adaptors will need to be appended to roles to 

convert the internal interface to the appropriate interface of the players as shown in 

Figure 5-9 below. For example, if the ROAD role is implemented as a standard 

Java object, and the player is a Web Service, then an adaptor that presents a WSDL 

(W3C, 2005) interface and converts between method calls and SOAP messages 

will be needed. In an agent context, another adaptor may need to be defined that 

can speak an agent communication language such as FIPA/ACL (FIPA, 2002).  

5.5. The separation of organisational structure from 
process 

Separating roles from the players that play those roles also allows us to define 

organisational role-structures that are separate from the players that perform the 

function of those roles. In conventional program structures, objects / components / 
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agents talk directly to each other. These mutual references can be hard-coded or 

they can be variable references that are dynamically set. However, such structures 

are fragile to the extent that all nodes must be present in the structure for it to be 

well formed. The representation of the structure is also implicit in the references 

that are embedded and hidden (if object-oriented principles are followed) in the 

components themselves. Such an approach also requires that the entity that is 

performing a function must have some representation of the structure in which it 

will participate; that is, a representation of the context in which the function will be 

used. This tangles structure and function in the code and inhibits adaptivity. If a 

component participates in multiple relationships, to change the component requires 

the restructuring of all those relationships.  

 An alternative approach has been called the principle of “blind 

communication” (Oreizy, Gorlick, Taylor et al., 1999). Lieberherr (1996) similarly 

proposes that “structure shy” components are a prerequisite for adaptive systems. 

In these approaches structure is defined separately from the components of that 

structure, and can be superimposed a posterior on those components. This is the 

approach adopted in ROAD, as the structure is defined by associating a role with 

one or more other roles by means of contracts. On the other hand, a role instance is 

always bound to one player at most. Having a single interface between a role and 

its player thus simplifies the substitution of players.  

 A consequence of having players that are structure-shy is that it is the roles 

(and the connectors/contracts that bind them) that hold a representation of their 

local structural relationships. A role can be associated with multiple roles but with 

only one player. While all incoming messages (from other roles) are passed to the 

player, out-going messages need to be passed to an appropriate associated role. 

Roles therefore can be regarded as message routers. In Figure 5-9 below, Role A 

passes all incoming messages to its player, but must allocate out-going messages to 

either Role B or C, depending on the message type (if B and C are of different 

types). Other allocation schemes are needed where structures include multiple roles 

that fulfil the same basic function (e.g. there is more than one coffee-maker in the 

organisation). For example, if Roles B and C are of the same type (they can both 

handle the outgoing message), then Role A might route the message to the role-

player pair that has the better response time, better reliability or whatever other 

quality of performance is of interest. 
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Figure 5-9: Role as message router - Principle of Blind Communication of Players 

 

5.6. The preservation of state 
Another consequence of the separation of a role and its player is the need to resolve 

the question of who is responsible for maintaining state. The maintenance of state 

is an issue because, in dynamic organisations, the integrity of the whole needs to be 

preserved even though the parts that hold state – the roles and the players – may 

change. We can distinguish two types of state that need to be maintained: 

communication state and domain state. 

5.6.1. Communication state  
In a ROAD organisation, communication between players is always mediated by 

their respective roles. Messages to a role may still be generated even though the 

role is temporarily unassigned or inactive, as described in Section 5.2 above. In 

order to be viable in the absence of players, organisations need to provide some 

form of message queuing and storage. The recipient player cannot be responsible 

for managing and storing these messages because that player may not always exist. 

A number of alternative approaches are possible to ensure the on-going viability of 

the organisation during the absence or transition of players. These include storing 

the message in the sending role, storing it in the receiving role (as shown in Figure 

5-10), or, alternatively, having the organisation store outstanding messages in the 

contractual associations that connect roles. A further possible alternative of having 

the sending players hold the message request if the receiver is off-line is not be a 

good strategy as the sending player itself may become inactive. It also violates the 

principle of blind communication as the transmitting player would need to be 

aware of other roles and whether or not they have a player assigned. 
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Figure 5-10: Roles as messages buffers 

 
 While the ROAD framework includes message buffering in roles, the 

approach to how communication state is preserved is perhaps an implementation 

issue rather than a fundamental attribute of runtime role structures. The scheme 

employed for message buffering in the role is dependent on the mode of interaction 

(e.g. push or pull) and type of synchronisation used for transactions (e.g. 

asynchronous transactions). The integrity of message delivery might also be 

handled in a middleware layer. We address these implementation issues in Part III 

of the thesis. 

5.6.2. Domain state 
The other type of state that needs to be preserved, in the event of changing roles 

and players, is that of the state of the process being executed, i.e. the domain state. 

In object-oriented approaches, state is typically encapsulated in the objects. In 

other approaches, state is stored so that it is globally accessible. In the context of a 

role-oriented organisation, a number of alternatives exist as to where the domain 

state can be maintained. These are 

• State is maintained in player   

• State is maintained in role 

• State is maintained in organisation 

The advantage of having the domain state stored in the player is that it maintains 

the encapsulation of data and operations on that data (as in object-orientation). As 

it is always the player that operates on the data, the internal representation can be 

hidden and decoupled from the system as a whole. This results in the loose 

coupling of role and player, and facilitates the swapping of player implementation. 

The player only has to conform to the interface defined by the role.  

 The disadvantage of maintaining state in the player is that when a player is 

replaced any state relevant to the organisation must be transferred to the new 

player. Safe points also need to be defined (eg. between transactions), when it is 

permissible to swap players. Alternatively, roll-back or compensation mechanisms 

Role B Role A Player 1 X
Role has incoming message queue to 

store messages if player is temporarily 
unassigned.

message 
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would need to be implemented. The problem of maintaining state during player 

transfer may be addressed by storing state either in the role or in the organisation 

composite itself. Storing state in the role does not entirely overcome the problem 

because, in an adaptive organisation, roles themselves are created and destroyed. 

Another approach, used for example in the powerJava framework (Baldoni, Boella 

and van der Torre, 2005a), stores state globally in the institution (the organisational 

composite). Access to such state (and resources) by roles is then controlled by the 

institution “empowering” roles.  Such an approach may be beneficial for storing 

data related to the composite level of abstraction. However, if it is used to store 

state that is properly the responsibility of the player, such an approach would break 

the encapsulation of the player, leading to the well-known problems associated 

with global data (Parnas, 1972). 

 As the ROAD framework aims to create adaptive organisations, all domain 

state is maintained by the players in order to facilitate the swapping of players. As 

a consequence, it is necessary to either define stateless points in the execution 

process where it is safe to transition, or alternatively define methods for 

transferring state between players. How to maintain the integrity of the system 

during component interchange is an active area of research (e.g. see (Hillman and 

Warren, 2004) for an overview), but is outside the scope of this thesis. 

5.7. Summary 
Organisation is defined here as the relationships between roles in the system, and 

the processes that maintain the viability of these relationships in response to 

changing goals and changing environments. An organisation-centric view of roles 

sees roles as nodes in an organisational structure, rather than just behaviours that 

can be added to an object or agent. In an organisation, roles have an independent 

identity and existence from the players who are assigned to them. Roles are first-

class runtime entities that can have a number of states with respect to players: 

assigned or unassigned; active or inactive. 

 The radical separation of roles and player raises a number of issues that need 

to be addressed. Organisational structures in complex systems require role-players 

with various levels of autonomy and capability. The relationship between a role 

and its player will vary depending on the level of autonomous action required of 

the player. A framework that supports such architectures needs to be able to handle 

bindings between roles and a diverse range of players (objects, agents, services, 

user interfaces etc.). The adaptable framework also needs to be extensible to handle 



98 PART II   ROAD Meta-model 

 

new types of binding. In the ROAD framework players are “structure shy”. 

Consequently, roles need to act as message routers. The framework will also have 

to handle the problems of preservation of communication and domain state when 

the organisation is restructured. In a ROAD application, roles are stateful interfaces 

that preserve communication state if there are no players attached. Role players of 

various capabilities (including humans in some circumstances) can be dynamically 

assigned to roles as the demands on the system change, or the environment in 

which it operates changes.  

 The next chapter describes how ROAD roles are associated using contracts to 

create organisational structures. 



 

 

6  
 
Contracts between Roles 

Our lives are governed by contracts. These contracts can be formal or informal. They 

include employment contracts, contracts of sale, business contracts, marriage contracts 

and so on. Even laws can be seen as a form of social contract between the citizen and 

the state. Contracts set out the mutual obligations of one party to another, and are 

concerned with the governance of interactions between the parties. Contracts are also a 

recurring theme in software development. As software becomes more distributed and 

open, the relationships between entities in the software system can become non-

deterministic. There may be many reasons for this non-determinism. The software may 

rely on third-party components or services with uncertain performance; the 

communication channels between distributed components may be of variable quality; 

the components may be coupled to an uncertain physical world; a mixed-initiative 

system may have unreliable or variable humans in the loop; and so on. Just as contracts 

help provide predictable behaviour in the social world, software contracts can be used 

to regulate the associations, and thus the behaviour, in loosely-coupled systems. 

 This chapter shows how contracts can be used to create, monitor and regulate the 

interactions between roles in a ROAD organisation. Section 6.1 briefly reviews the 

various uses of the concept contract in software engineering. In Section 6.2 we define 

the properties of a ROAD contract, and then, in Section 6.3, show how the control of 

interaction in a contract can be abstracted from its functional properties. In Section 6.4 

we show how performance measurement points that correspond to various 

synchronisation approaches can also be defined at this abstract level. Section 6.5 

elaborates the general properties of application specific concrete contracts that inherit 

from these abstract contracts. Section 6.6 relates the concept of a service-level-
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agreement to ROAD contracts. This meta-model of contracts forms the basis for our 

implementation of contracts in the ROAD framework, described in Part III of the 

thesis.  

6.1. Software contracts  
The concept of a contract is commonly used in software engineering, although a 

variety of meanings have been attached to the term. For example, Bertrand Meyer’s 

design-by-contract (DBC) (Meyer, 1988) defines the preconditions, post-conditions and 

invariants that must hold for a given type of interaction with an object. Such contracts 

are essentially one-sided because they only explicitly express the conditions for one 

party. The other party is anonymous. DBC contracts are a type of interface 

enforcement.  

 In the real world, however, contracts always have at least two parties. They are a 

type of association that expresses the obligations and responsibilities the parties have to 

each other. This view of a contract as a multi-party association has also been proposed 

in software design. Richard Helm (Helm, Holland and Gangopadhyay, 1990) saw 

contracts as a way of specifying behavioural compositions and the obligations of 

participating objects. This concept can be seen as a precursor to the reusable design 

patterns which Helm went on to develop with the Gang-of-Four (Gamma, Vlissides, 

Johnson, and Helm, 1995). Although Helm envisaged the development of programming 

language constructs to instantiate contracts that captured such interactional 

compositions, such patterns have remained largely design artefacts. More recently, 

however, just as DBC contracts have been implemented with aspects (Diotalevi, 2004), 

work has been done to encapsulate such patterns with aspects (Hannemann and 

Kiczales, 2002). 

 In Chapter 3 we reviewed, what we termed, contract-oriented architectural 

frameworks (Collet, Rousseau, Coupaye et al., 2005; Mukhija and Glinz, 2003). These 

frameworks use contracts to compose configurations and/or to constrain interaction 

between components. The ConFract framework (Collet, Rousseau, Coupaye et al., 

2005) we reviewed in Chapter 3 is based on Beugnard et al.’s (1999) classification of 

contracts. This classification proposes four “levels” of contract.  

• Level 1: Syntactic contracts - ensure compatible signatures for interaction.  

• Level 2: Behavioral contracts  - define a component-centric interface similar to 

DBC pre, post and invariant conditions  

• Level 3: Synchronization contracts - deal with concurrency/coordination issues 

across multiple components.  
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• Level 4: Quality of Service (QoS) contracts - encompass all non-functional 

requirements and guarantees.  

However Beugnard, and consequently ConFract, sees these levels/contracts as separate 

contracts rather than the terms of a single contract as in ROAD.  

 In ROAD, contracts are used not only to compose and control associations 

between roles, but are also used to make role-players ‘accountable’ for their 

performance. In other words, ROAD contracts not only define functional relationships, 

but also define the non-functional properties of those relationships, both in terms of the 

requirements (obligations of the parties) and the state-of-fulfilment of those obligations 

(performance). In this sense they are more like a commercial contract than DBC 

contracts or contracts that only express behavioural compositions. Such performance 

contracts are a way of monitoring and controlling the associations between entities that 

are loosely coupled. They specify the required performance, and monitor and store the 

actual (measured) performance of a role-player in an organisation. To extend the 

analogy with a commercial contract, ROAD contracts are more like employment 

contracts than, say, a building contract where the contract specifies that a set of tasks be 

completed once-only. ROAD contracts empower the role-player in the context of the 

organisation, and set the expected performance levels for repeated actions.  

 In brief, ROAD contracts combine all the three aspects discussed above: 

composition, interaction control, and performance.  

6.2. The attributes of ROAD contracts 
ROAD contracts are binary association classes that express the obligations of the 

contract parties to each other. They are both a specification of the parties’ mutual 

obligations, and a runtime entity that monitors and, to some extent, enforces 

compliance with that specification. ROAD contracts define the functional interactions 

that can occur between the role players, define the non-functional requirements of each 

of the parties with respect to those interactions, and measure the role-players’ 

performances against those requirements.   

ROAD contracts have the following features (illustrated in Figure 6-3 below): 

• The names of the parties to the contract. A ROAD contract binds roles of 

particular types (e.g. Foreman, ThingyMaker). 

Contracts will also have a number of clauses. Clauses can be of three types: terms; 

general clauses; and protocol clauses:  
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• The terms of a contract are clauses that specify what one party can ask of the 

other party. The collection of terms defines the parties’ mutual functional 

obligations. For example, a contract term may specify that a ThingyMaker is 

obliged to fulfil requests to make thingies from its Foreman. Non-functional 

attributes (utilities) are associated with those terms – for example, the minimum 

performance standard, the price, quality of service etc. Each term of the contract 

can have one or more agreed utility functions that define how performance of 

actions taken under that term of the contract will be measured. Contracts may 

also contain provisions that define remedies if a clause is breached, or if there is 

underperformance, by one of the parties. Some terms may “go to the heart of the 

contract” in which case breach of a clause leads to termination of the contract.  

• General clauses in a contract define the preconditions for the contract’s 

instantiation. These include any conditions relating to commencement, 

continuation, and termination of the contract. In ROAD, contract termination is 

the cessation of an association (similar to termination of employment) rather than 

the completion of a task. 

• Protocol clauses define sequences of terms to be followed by the parties (Yellin 

and Strom, 1997; Plasil and Visnovsky, 2002). For example, a foreman might be 

required to allocate the resources (thingy parts) to a ThingyMaker, before it can ask 

the ThingyMaker to make a thingy. A number of existing approaches exist for 

specifying interaction protocols (Bracciali, Brogi and Canal, 2002). Examples of 

protocol clauses can be found in the Buyer-Seller contract described in 

Chapter 10. 

 
As well as having the above attributes, ROAD contracts have a variety of 

manifestations: general form (à la class), specific contract (à la object) and an 

execution state.  

• The general form (type) of a contract sets out the mutual obligations and 

interactions between parties of particular classes (e.g. Foreman, ThingyMaker). 
Clauses applicable to all contracts of that type can be defined. Such clauses may 

express interaction patterns (Party A will do α under term X when Party B has 

done β under term Y). Clauses may themselves be the subject of interaction 

patterns (Clause 2 will take effect after the state defined in Clause 1 is fulfilled).  

• A specific contract puts values against the variables in the contract schedule (e.g. 

Foreman and ThingyMaker are named, date of commencement agreed, performance 

conditions put on clauses etc.). Extra clauses, not in the general form of the 
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contract, may also be added. A specific contract is instantiated with an identity 

when the concrete contract is ‘signed’; that is, when specific parties are bound to 

the contract.  

• The terms of a contract have execution states. Each term has a state machine that 

maintains the state of interaction between the parties with respect to that term 

(e.g. Party A has asked Party B to do α under the terms of Term X, but Party B 

has not yet complied). We call the interaction that occurs during the execution of 

a term, a transaction. States of an instantiated contract can include incipient, 

active, suspended, and terminated. Active and terminated states can have a 

number of sub-states as shown in the diagram of a contract life-cycle1 in Figure 

6-1 below.  

 

. 
Figure 6-1: Life-cycle of a contract showing various states 

The transitions between these contract states are instigated by the contract’s owner (the 

organiser of its self-managed composite), or by clauses being triggered. The triggering 

of conditions in contract terms can cause transitions between the Active state’s sub-

states. For example, Figure 6-2 is an example of a (partial) Foreman-ThingyMaker Contract. 

The specific schedule values of the contract instance are in italics. If the contract state 

is Performing, and Term 1 is violated (the ThingyMaker on average makes less than 5 

thingies per minute), then the contract state will transition to Non-performing or In-

breach (if the rate is less than 2 thingies per minute). If there are no general clauses 

that match this circumstance, the Organiser needs to make a decision as to whether it 

                                                 
1 (Beugnard, Jézéquel, Plouzeau et al., 1999) defines a similar scheme for contract life-cycle, namely: 
Definition (selection of contract type as suitable), subscription (parties bound to contract), application 
(including handling contract violations), termination (parties unbound), and deletion. In ROAD, on the 
other hand, parties (role instances) are bound to a contract when it is instantiated.  
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will transition the contract to one of the Terminated states that ends the association 

between the roles. This is not necessarily an automatic transition, as the Organiser may 

have no other thingyMaker players available and may choose to keep an 

underperforming player. Note that contract states do not explicitly indicate the “guilty 

party”, but this information is implicit in the term that is violated (Party B in the case of 

Term 1). 

 
Contract Type Foreman-ThingyMaker Contract  
Contract Instance Name   ft1 
Parties   Party A: Foreman  f1 
               Party B: ThingyMaker  tm1 
Terms   
   1. B must make thingies on request from A  NFR1   Moving average >= 5 thingies / minute 
 PRE: qty (thingyparts) > 0  NFR2: cost = $1 / thingy  
   2. A may provide thingy parts to B  
                      on request from B  NFR:  none 
Breach conditions  B provides < 2 thingies / minute 
General Clauses  contract state is suspended if B under maintenance 
Current state  Incipient   

 Figure 6-2:  Example of a contract instance between a Foreman and a 
ThingyMaker 

 Figure 6-3 below shows the basic concepts that make a ROAD contract, and that 

serve as a meta-model for the implementation of contracts in the ROAD framework as 

described in Part III. The elements in the diagram are discussed in more detail in 

subsequent sections of this chapter. 

 

 
Figure 6-3: ROAD Contracts - Basic Concepts 

Real-world commercial contracts are passive bits of paper that are monitored, and to 

some extent enforced, by the parties. A ROAD software contract, on the other hand, 

can store dynamic state-of-execution information in the contract itself. The contract 

itself (on behalf of the organisation) can also enforce the terms of the contract by 

controlling the interactions between the parties. 
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 In ROAD, contracts between roles are currently binary. While there is no technical 

impediment to creating contracts with more than two parties, if a number of parties are 

jointly responsible for the performance of a contract term it can be difficult to assign 

responsibility in the event of failure. As one purpose of ROAD contracts is to identify 

underperforming role players, making all contracts binary simplifies this process. The 

limitation of binary contracts is that they cannot, by themselves, model complex 

interdependencies between three or more parties. In ROAD, these interdependencies 

between contracts are handled by the composite’s organiser as we describe in the next 

chapter.  

6.3. Contract abstraction 
Contracts between functional roles often share common characteristics with respect to 

the control aspects of the relationship. These aspects can be abstracted and 

encapsulated as abstract contracts. We call these abstract associations performative 

contracts because they express what one party can ask of another; i.e. a performative2. 

The participants in a performative contract play performative roles, as well as 

functional roles. Examples of such performative roles include supervisor, subordinate, 

auditor, auditee, predecessor, successor, buyer, seller, and so on. As such, performative 

roles are classifiers for the ends of an association, and always come in pairs as shown in 

Figure 6-4 below.  

 
Figure 6-4: Functional and performative roles 

 Using our example of a WidgetDepartment, the performative relationship between a 

Foreman and an Assembler could be characterised as a Supervisor-Subordinate 

relationship. Similarly, a Foreman-ThingyMaker relationship would also be characterised 

as a Supervisor-Subordinate relationship. Rules can be defined that control the 

interactions between such performative roles. For example, a supervisor can tell a 

                                                 
2 In previous work (e.g. (Colman and Han, 2006b)) we called these operational-management (or just 
management) roles and contracts. In order to avoid confusion with composite management (organiser) 
roles we now call them performative roles and contracts. We have adopted the word performative from 
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subordinate to do a work related task but a subordinate cannot tell a supervisor what to 

do. At the programming level, this means that subordinate roles cannot invoke 

particular categories of methods in supervisor roles.  Performative contracts define 

patterns of interaction between roles at an abstract level but, unlike functional roles, do 

not serve as a position in an organisational structure. Abstracting away control from the 

process of an organisation facilitates the reuse of common patterns of control across 

various types of contract, and can be used to describe the global flow of control through 

an organisation. For example, an organisation that is a network of roles bound by 

supervisor-subordinate performative contracts could be characterised a command 

hierarchy.    

 Concrete contracts inherit control relationships from these performative contracts. 

The conceptual relationships between concrete and abstract performative contracts, and 

the respective roles they associate, are illustrated in Figure 6-5 below. 

 

Figure 6-5: Functional and performative contracts 

  As can been seen from Figure 6-5 above, fac is an instance of a Foreman-
AssemblerContract which is an association class between the Foreman and the Assembler 

roles. The ForemanAssemblerContract inherits the form of its control relationships from 

the SupervisorSubordinateContract by virtue of the fact that the Foreman has a Supervisor 

role in relation to the Assembler’s Subordinate role. 

 Figure 6-6 below illustrates an organisational structure for our WidgetDepartment. 
This structure is similar to the Bureaucracy pattern (Riehle, 1998) but is built using 

contracts. In order to simplify the diagram, contracts have been drawn as diamonds. 

The structure, which is similar to a business organisation chart, is still abstract because 

players have not yet been assigned to roles. Note that the DooverMaker functional role 

has both Peer and Subordinate performative roles in the organisational structure relative 

to other functional roles with which it interacts. 

                                                                                                                                   
agent communication languages to indicate, at an abstract level, what one party can say to another (i.e. 
what types of speech acts are permissible). 
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Figure 6-6: Domain specific abstract organisation bound by contracts 

6.4. Abstract contracts at the performative level  
A contract term defines a transaction that expresses the obligation of one party to the 

other party. As discussed earlier, the communications that occur between the parties in 

such a transaction can be viewed, at an abstract level, as expressing control 

relationships. Communications between the parties can be represented as abstract 

control messages. This allows us to characterise three properties of contracts and terms: 

the authority relationship between parties to the contract; the sequence of abstract 

messages in a term; and the points at which the performance (or non-performance) of 

the contract term can be measured for various types of transaction. These three 

properties of abstract performative contracts are examined in the next three subsections. 

6.4.1. Expressing authority using abstract message types 
In ROAD, all application-related interactions between players occur via the contracts 

that associate their roles in the organisational structure. This control over interaction 

can become important if the players of those roles are, say, outside the organisational 

boundary and their behaviour is uncertain. Such players will become increasingly 

common as software systems become more open, dynamic and complex. Contracts 

restrict the types of method that particular role instances can invoke in each other, thus 

helping to ensure that role-players are well-behaved with respect to the application. 

While such restrictions can always be written into domain-specific concrete contracts, 

there are a number of common patterns of authority relationship that can be generalised 

into abstract performative contracts. From our example above, the Supervisor-
Subordinate performative role association restricts interactions between the entities 

playing the ThingyMaker and the Foreman to certain types of interaction. For example, a 

ThingyMaker cannot invoke actions in a Foreman-Supervisor. Furthermore, these contracts 

only allow interactions between particular instances of role-players. For example, the 

method ThingyMaker.setProductionTarget() can only be invoked by the ThingyMaker’s own 
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Foreman. A Foreman that is not contracted to that particular ThingyMaker could not invoke 

the method.  

 The control communication in performative contracts can be defined in terms of 

control-communication act (CCA) primitives. These performatives abstract the control 

aspects of the communication from the message.  We can define a simple set of abstract 

CCAs for direct and indirect (resource constraint) control and for information passing 

(Colman and Han, 2005). Table 6-1 defines an example set of such abstract message 

primitives suitable to a hierarchical organisation. 

Table 6-1: Example set of abstract message types represented by CCA Primitives 

D DO Q QUERY R RESOURCE_REQUEST 
G SETGOAL  I INFORM A RESOURCE_ALLOCATE  
Y ACCEPT N REJECT   

 

Expanding our example of a Supervisor-Subordinate contract using the primitives we 

defined above, Supervisors can initiate some types of interaction and Subordinates can 

initiate others. Initial CCAs for these roles are: 

Supervisor initiated: DO, SET_GOAL, INFORM, QUERY, RESOURCE_ALLOCATE 
Subordinate initiated: INFORM, QUERY, RESOURCE_REQUEST  

Other forms of performative contract, such as Peer-Peer, would have different sets of 

valid initial CCAs for each party. For example, peers might be able to initiate messages 

corresponding to all the above CCA types, but the respondent peer has the option of 

replying with a REJECT. We discuss sequences of CCAs in the following section.  

 If needed, the set in Table 6-1 could be extended to capture a referential command 

relationship (A tells B to tell C to do something). Alternatively, the set could be 

expanded to express propose-commit type communications that might be found in 

agent communication, or in a database two-phase commit. However, while the above 

set is only a basic set of CCAs, it is sufficient to allow us to define a number of 

contracts between performative roles. From these contracts we can create 

organisational structures such as those in Figure 6-6 above.  

 The concept of a CCA in this paper is similar to the concept of a communication 

act (or performative) in agent communication languages such as FIPA-ACL (The 

Foundation for Intelligent Physical Agents, 2002). CCAs, as defined here, are far more 

limited in their extent. CCAs deal only with control communication of two parties 

bound in an organisational contract, and do not have to take the intentionality of 

independent agents into account (Zambonelli, Jennings and Wooldridge, 2003). 

Abstract communication act types have also been used to control interaction in Web 

services Message Exchange Patterns (MEPs) in WSDL (W3C, 2005). However, MEPs 
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only express the direction of communication (IN or OUT) and whether or not the 

communication is robust or optional. In (Barros, Dumas and ter Hofstede, 2005) a 

number of service interaction patterns are catalogued, including both bilateral and 

multilateral patterns. The bilateral patterns (e.g. “Relayed Request”) may provide a 

catalogue from which transaction types expressed as CCA sequences could be 

developed. Abstract protocols also appear in component composition (Yellin and 

Strom, 1997). These are aimed at ensuring the compatibility of component interfaces 

and the sequencing of messages. They express the direction of the message and if it is a 

request or a response (Plasil and Visnovsky, 2002). Authority relationships or control 

semantics (eg. DO) are not captured. 

6.4.2. Contract transactions as CCA sequences 
As well as controlling individual method invocations, contracted transactions often 

involve a sequence of interactions.  As shown in Figure 6-3 above, a contract term is 

associated with a transaction definition (as distinct from a protocol clause which is a 

sequence of transactions). The contract needs to track these interactions to ensure that 

contractual obligations are being followed by the parties, and to know when a 

contractual transaction is completed. A transaction instance performed under a term of 

the contract can be viewed as a sequence of CCAs. These CCAs are abstractions of the 

actual underlying messages or method invocations. These sequences are at the same 

level of abstraction as CCAs. Only the form of communication between the parties is 

represented. There is no information about the particular content of the task. There are a 

limited number of these sequences that form sensible interactions. For example, both 

QUERY → INFORM, and RESOURCE_REQUEST → RESOURCE_ALLOCATE make sensible CCA 

sequences between an initiator and respondent, whereas DO → RESOURCE_ALLOCATE 

(presumably) does not make sense. 

 What constitutes a valid sequence also depends on the type of request 

synchronisation used in the transaction. The CORBA middleware standard defines four 

approaches to request synchronisation: Oneway, Synchronous, Asynchronous and 

Deferred-Synchronous (Emmerich, 2000). Similar distinctions between synchronisation 

approaches are needed in the definition of valid CCA sequences. For example, a 

oneway or synchronous request does not require any separate response from the 

respondent. In these circumstances a single DO type invocation may be a valid 

transaction. On the other hand, if an asynchronous approach is implemented a reply 

would be expected in the form of, for example, a DO-INFORM sequence.  
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 It is possible to represent these sequences as regular expressions made up of CCAs 

between initiator and respondent. To do this we will encode the CCAs as single letters 

(as in Table 6-1 above) so that complete transactions can be represented as individual 

strings. For further expressiveness, we can apply the convention that initiator CCAs are 

capitalised, and respondent CCAs are in lower case. For example, the string “Dy” 

indicates that the initiating party asks the respondent to do something, and that the 

respondent subsequently accepts. A deferred-synchronous DO sequence (where the 

initiator is responsible for getting the result of the transaction) could be expressed as 

“DQ”. Other sequences, such as a deferred-asynchronous (“DyQi”), could also be defined 

if needed. 

 Table 6-2: Example form of an abstract performative contract 

Performative Contract 
Name Supervisor-Subordinate 
Party A Supervisor 
Party B Subordinate 
A initiated terms  
 - Oneway I; G; A 
 - Synchronous D; Q 
 - Asynchronous Dy; Di; Gy; Gi; Qi 
 - Deferred Synchronous DQ, GQ  
B initiated terms  
 - Oneway I 
 - Synchronous Q; R 
 - Aynchronous Qi; Qn ; Ra; Rn ; Ri 

 
The form of our Supervisor-Subordinate performative contract has been summarised in 

Table 6-2. The valid invocation sequences in a transaction are expressed as strings as 

defined above. The contract defines terms that permit asynchronous and deferred-

synchronous interaction. In the example contract, Oneway DOs are not permitted as we 

want to measure the time-performance of action requests, and to do this we need a 

response when the transaction is complete. The terms of the contract will be violated if 

the sequence of interactions does not follow one of these strings. Other types of 

performative contract will have different sets of permissible sequences. For example, 

the sequence “DiN” is presumably acceptable in a Peer-Peer performative contract, 

where the “i” is a conditional accept and the initiator rejects the condition. A term of a 

concrete contract, such as shown above in Figure 6-2, would be characterised by one of 

the above CCA sequences. For example, Term 1 in “B must make thingies on request from A” 

might be a “Di” sequence, assuming the transaction was asynchronous.   

 We can further extend the CCA sequences to take account of a non-response to a 

message where, say, communication channels are unreliable. For example, D*xi would 

express the situation where the initiator can send a DO type message up to x times 
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before there is a violation of the contract term. For each transaction where a response is 

expected, values for the response timeout and the number of permissible retries (x) 

would be specified (this is done at the concrete level of the contract). 

 If contracts are to enforce CCA sequences, they need to keep track of the state of 

communication between the roles that are party to the contract. This implies that there 

must be an instance of a contract for every association between roles. For machine 

processing, control abstractions of transactions can be represented by finite state 

machines (FSMs). These FSMs keep track of the transactions between two contracted 

parties and report violations. Clauses can have as a goal the maintenance of a state or 

the achievement of a state. In the case of maintenance terms, a successful transaction 

will result in a return to a ‘ready’ state. The successful completion of achievement 

clauses will result in a ‘completed’ state for that clause. Figure 6-7 below illustrates DO 

transaction sequences for the Supervisor-Subordinate contract. The nodes represent 

CCAs issued by either the initiator or the respondent in the transaction of a particular 

term in the contract. The letters in the nodes are a short hand for CCAs, as defined 

Table 6-1 above (initiator CCAs in capitals, respondent CCAs in lower case). The FSM 

shows valid synchronous, asynchronous and deferred-synchronous transactions 

initiated with a Supervisor DO (for simplicity only timeouts on the DO has been 

illustrated). 

 
Figure 6-7: Valid synchronous, asynchronous and deferred-synchronous CCA sequences 

initiated with a Supervisor DO CCA 

6.4.3. Using CCAs to define performance measurement points 
In an adaptive system, we need to know if the role-players are performing their role(s) 

according to the non-functional requirements (NFRs) defined in the role’s contracts, so 

that adaptive action can be taken if underperformance is detected. The NFRs are 

defined with respect to functional transactions (e.g. Functional transaction Task A will 

be completed in NFR Time t). CCAs allow us to define transaction patterns in a domain-

independent way. The performance, or non-performance, of an obligated party bound 

by a contract term can be determined by measuring the change in various states at the 

start and at the end of the transaction. By intercepting messages between roles, and 
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monitoring the CCAs of those messages, a performative contract can determine the 

start and finish of transaction patterns defined by contract terms. The change of state 

measured can be of two types: time-dependent and domain-state-dependent. Time-

dependent performance is calculated by measuring the time it takes to perform the 

transaction itself. Calculating domain-state-dependent performance involves measuring 

some state of the domain or environment before and after the transaction, and then 

determining the effect of the transaction (e.g. a cost-function is evaluated, or a control–

variable is measured.) In ROAD, performance is measured by an arbitrary utility 

function associated with the contract-term, as shown in Figure 6-3 above.  

 The type of performance that can be measured, and how CCAs indicate the start 

and finish of the transaction, will depend on the synchronisation method of the 

transaction; that is, whether the contract term is oneway, synchronous, asynchronous or 

deferred synchronous. 

 Timed performance may need to be measured when the term invokes some action 

in the obligated party; that is, when a DO or SETGOAL type message is sent. Figure 

6-8 below shows the interception points at which performance is measured for the 

differing synchronisation methods. In synchronous interaction, time is sampled at the 

point of method invocation and at the point of return of the method. Asynchronous 

interaction relies on detecting the INF CCA reply that the obligated party sends when 

the task is finished. In the case of a deferred-synchronous interaction, the execution 

time cannot be measured directly from interactions intercepted by the contract between 

roles. This is because there is no message sent on completion of the task from the 

obligated role to the invoking role. However, the performance of this type of interaction 

can be measured against a benchmark: the time between the invocation and when the 

query for results is sent from the invoking role. The obligated party either meets the 

benchmark or does not. 

 
Figure 6-8: CCA points intercepted for measurement of time-based performance vary 

depending on the contract-term’s synchronisation type (players not shown) 
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Figure 6-8 above is a simplification; it does not show the role-players to whom the calls 

are delegated, or show the contract that intercepts the messages between the roles. It is 

this contract that measures the time at the appropriate points, and calculates the time-

based metric. Also note that performance, as measured between abstract messages, does 

not indicate success or failure of the task itself, as there is no domain semantics 

expressed. All that is measured is the time elapsed. This measurement needs to be 

interpreted by the contract into a level of performance. 

 Domain-state-dependent performance measures the change of state in environment 

rather than time elapsed during the transaction. By detecting the CCAs with which a 

transaction starts and finishes, a contract can be made to evaluate an arbitrary utility 

function that indicates some change of state within the domain or environment 

(including changes of state in the player). This utility is defined at the concrete level of 

the contract. Such measurement of performance can be applied to transactions with all 

types of synchronisation method. Even a oneway interaction, where no response is 

received from the obligated party, can be monitored for domain performance provided 

there is an appropriate delay between the measurement of the initial state and the 

measurement of the altered state. For example, a classic feed-back control loop (as 

described in Chapter 2) is a oneway interaction. The process set by the controller does 

not return a result – rather a control variable is sampled in the environment to 

determine the result of the control settings. Figure 6-9 below shows the measurement of 

domain-state dependent performance in an asynchronous transaction. Role A invokes 

some action in Role B. This invocation is intercepted by the contract which measures 

the environment ε before passing invocation to Role B, resulting in the invocation 

being enacted by B’s player. This action changes the environment.  

 
Figure 6-9: Change of domain-state measured in an asynchronous transaction 

 The response message is intercepted by the contract and any change in the 

environment ε is measured. For example, if Player B is an external service that charges 

Role BRole A

do_op( ) 

Environment

ε

effect measure

op() 

inf_op( ) 

Player B 

utility(∆environment) 

Contract 



114 PART II   ROAD Meta-model 

 

for the provision of a function, the contract could access the accounting system before 

and after the transaction. 

 Contracts at the performative level are limited in that they only monitor or enforce 

the form of the communication between the parties. Abstract types of interaction may 

be restricted, and transaction patterns monitored for performance — but there is no 

domain content apparent at the performative control level of abstraction. Domain-

specific content is defined at the concrete, functional level of the contract. 

6.5. Concrete contracts 
A concrete contract type defines the types of functional role that can participate in the 

contract. In addition, as was illustrated in our example of a Foreman-ThingyMaker 

contract in Figure 6-2 above, an instance of a concrete contract further specifies the 

terms and clauses of the contract. The specification of a term includes the specification 

of the signatures of the invocations involved in the transaction. The term can also 

define an expected level of performance associated with its transaction, as measured by 

an associated utility function. A concrete contract inherits its control patterns from the 

abstract performative contract as described above. For example, the Foreman-

ThingyMaker contract inherits the CCA control patterns from the Supervisor-

Subordinate abstract performative contract, which are applied to the specific methods 

of the Foreman and ThingyMaker (see below).  

 All contracts need to specify the following items: 

• Parties. The types of functional role that can be bound to the contract are 

specified. In the example contract in Figure 6-2 , only instances of roles of type 

Foreman and type ThingyMaker can be bound to the contract. 

• Terms of the contract. Each term defines a transactional obligation of one party 

to the other. These are expressed as an initial method signature that can be 

invoked in the obligated party. When a contract specialises an abstract 

performative contract, all functional role method invocations and responses 

between the parties are associated with CCA primitives. For example, the 

do_makeThingy() method of the ThingyMaker tm would be matched to the 

DO CCA. This means a supervisor, contracted to tm, can invoke this method. If a 

CCA sequence is to be enforced for a transaction, a valid CCA regular 

expression (as defined in the performative contract) is assigned to the interaction. 

Transactions between the parties must follow any abstract CCA pattern defined 

in the performative level of the contract. If a CCA sequence allows for timeouts, 

the values for timeouts (in the event of no response), and values for the number 
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of retries that are permitted, are specified. This is done in the concrete contract as 

these values only make practical sense in relation to a domain specific function. 

Optionally, contracts may specify performance: 

• Performance of terms. The contract defines the required level of performance 

and measures actual performance. If a term defines a type of action that can/must 

be performed, the contract term can have associated with it a utility function that 

measures the obligated party’s actual performance of those actions. In the 

example contract (Figure 6-2), thingies must be made at a rate > 5 per minute. As 

set out in the previous chapter, these utility functions can be time-dependent or 

domain-state dependent. The actual performance is compared to the required 

performance to determine the obligated party’s level of performance with respect 

to the term – e.g. performing, underperforming, in-breach. For example, a 

contract might specify the maximum time allowed for a contracted thingyMaker to 

produce a thingy. These non-functional requirements (NFRs) reside in, and are 

measured by, the contract rather than the component itself. As such, the 

performance requirement of a term can be changed dynamically by the composite 

organiser. 

• Performance of contracted party. The purpose of measuring the performance of 

contracted parties is to attempt to mitigate underperformance, and to replace an 

underperforming party if necessary. A contract term always has one party that is 

responsible for its performance. The performance of a party, with respect to the 

contract, is the aggregation of its performance of such terms. The significance of 

underperformance can vary. Some term violations “go to the heart” of the 

contract and violation of the critical clause leads to automatic breach of the 

contract — the contract throws an exception. On the other hand, other terms may 

not be as critical to the contract and the underperformance will merely be 

recorded. The contract contains metrics to measure the performance of its terms; 

for example, ‘average time to make a thingy’.  

Additionally, conditions for general clauses and terms may be specified:  

• Preconditions, post-conditions and invariants for the interactions can be 

specified for both general-clauses and terms. General clauses that set 

preconditions for the contract’s instantiation can be defined. These include 

conditions relating to commencement, continuation, and termination of the 

contract. In our example, the contract is suspended if the ThingyMaker machine 

is off-line due to maintenance. Conditions can also be set against the performance 

of contract terms. These conditions are similar to those defined in the design-by-
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contract (DBC) approach (Meyer, 1988), where such conditions are aimed at 

ensuring the correct functioning of the software. Consequently, these DBC 

conditions themselves cannot be changed. In addition to such fixed conditions, 

ROAD contracts may have conditions that can be varied by the organiser 

(provided the variation does not contravene correctness constraints). This allows 

variable NFRs to be expressed as conditions of the contract. For example, if there 

are costs associated with the performance of a function, such as making a thingy, 

then the contract might specify the acceptable limit of those costs. 

During execution, a contract itself monitors the interactions between the roles. The 

contract will prevent unauthorised or invalid interactions and monitor transactions in 

order to maintain the state of execution of its clauses. The contract also keeps the state 

of any performance metrics updated. If an obligated party underperforms according to a 

term of the contract, or if a clause is violated, the contract informs the organiser role 

that controls it. Contracts may also be actively monitored by their organiser roles. We 

examine the interactions between contracts and organiser roles in the next chapter.  

6.6. ROAD contracts and role-player bindings 
It is important to remember that ROAD contracts are always internal to the 

organisation. They define the relationships between roles, and roles are always a 

function defined by the organisation. The player of a role can, however, be outside the 

organisation boundary. For example, the doovers for our Widget Making department 

are sourced from an external service. The relationship between ROAD contracts and 

the role-player bindings discussed in the previous chapter therefore need to be 

considered. 

 In the discussion of functional roles in the previous chapter, we pointed out that a 

role description is an aggregation of the properties derived from its relationships. To be 

able to play a role, a player must be able to meet the requirements defined in the role. It 

follows, given the above discussion of contracts, that the properties of a role-player 

binding are the aggregation of the obligations of the role expressed in the role’s 

contracts. This role-player binding may itself be a contract of sorts that is negotiated 

between the organisation (as owner of the role) and the player. We will call these role-

player contracts Service Level Agreements (SLAs) in order to distinguish them from 

binary ROAD contracts. SLAs can be external to the organisation boundary, and their 

formulation may therefore be a matter of negotiation between organisational entities, 

rather than derived solely from organisational fiat. 
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 While we do not discuss the format of role-player bindings or SLAs in this thesis, 

it is worth noting that SLAs (or more correctly the organisation’s negotiating position 

for what it wants in a SLA) can be derived from the role’s contract terms. In a Web 

service context, ROAD contracts provide a natural mapping to coordination 

mechanisms such as WSLA (IBM Corporation, 2003), WS-Coordination (BEA 

Systems, IBM and Microsoft, 2004), or external contracts such as WS-Agreement 

(Global Grid Forum, 2004). For example, an internal contract that binds the role (as 

proxy for the Web service in the organisation) to the rest of the system can serve as a 

WS-Agreement agreement template, as shown in Figure 6-10 below. ROAD contract 

terms map to service description terms and service level objectives in WS-Agreement. 

ROAD contracts have no concept of a guarantee term as found in WS-Agreement 

because there is no notion of penalty for default in an internal ROAD contract. Such 

terms could however be added to the template when the external contract is defined. 

  

 
Figure 6-10: Internal ROAD contract maps to external SLAs 

6.7. Summary 
Contracts in the ROAD framework provide the connectors between roles that create the 

organisational structure. ROAD contracts serve three functions in an adaptive system: 

composition, interaction control, and measurement of performance over interactions. 

ROAD contracts have abstract performative and concrete functional levels. Abstract 

performative contracts specify the type of communication acts that are permissible 

between the two parties, and they define the transaction patterns that can be measured 

for performance. Concrete contracts bind the role instances to the contract, and create 

the clauses of the contract that specify, among other things, the performance 

obligations of each party. Abstracting the performative aspects of contracts makes 

possible, through contract inheritance, the reuse of authority patterns found in many 

types of organisational structure.  
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 In the next chapter, we show how roles and contracts are combined together to 

create self-managed composites, and how these self-managed composites are structured 

to create adaptive applications. 



 

 

7  
 
Self-managed Composites and the 
Management System  

A self-managed composite ( “composite” for short) is a cluster of role instances bound 

by contracts. Each composite has a single organiser that manages its internal roles and 

contracts. Each composite serves some definable function and, as such, is itself a role-

player that plays a role in an ‘enclosing’ composite. Self-managed composites are the 

adaptive unit in a ROAD application. Such composites are “self-managed” because 

they attempt to adapt to meet the dynamic requirements defined in the external roles 

they play, and also adapt to the variable performance of the players that play the 

internal roles of the composite. In terms of the system-theoretic concepts discussed in 

Chapter 2, self-managed composites are systems with a well-defined boundary that 

attempt to maintain a homeostatic relationship between their external role and their 

internal components. A ROAD application1 is a network of self-managed composites 

which contain roles. These roles can be played by other self-managed composites or 

other players. 

 In this chapter we begin by describing the structure of self-managed composites 

and their relationship to the other elements in the ROAD framework: roles, players, 

contracts and organisers. We then discuss the issues of message delegation, player 

containment and whether or not composites perform any domain process or maintain 

state. Section 7.2 describes the function of the composite organiser who is responsible 

for managing the composite. The functions of an organiser role are distinguished from 

                                                 
1 The top level player is the application itself. While the application does not in itself play a role in an 
enclosing ROAD composite, the application can model itself as a role player in its environment. The 
description of this environmental model, and the application as a role within that model, is a promising 
subject for further research, but is beyond the scope of this thesis. 
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that of an organiser player.  Organiser roles define how to change the composite while 

players decide what to change. An example strategy for adaptation within a self-

managed composite is then described. Section 7.3 describes the management system 

which connects the organisers across composites. This management system is distinct 

from the functional system of functional roles and players. Adaptive behaviour across 

composites is described including the propagation of non-functional requirements and 

performance information. The conclusion to the chapter includes a summary model of 

all the main ROAD concepts presented in this part of the thesis (Chapters 4 – 7).  

7.1. The structure of self-managed composites 
The relationship between roles, players, contracts and composites is illustrated in 

Figure 7-1 below. A self-managed composite consists of one or more contracts, each 

contract associating two functional roles (FnRole). Each role is played by a player, 

which may itself be, recursively, a composite. This recursive structure of self-managed 

composites is the basis of distributed management in ROAD applications. Each 

composite has one organiser (role and player) which manages the indirection within the 

composite. The elements in the conceptual model in Figure 7-1 form the basis of the 

ROAD framework, and can be viewed as abstract classes from which concrete domain-

specific classes are specialised. 

 
Figure 7-1: Conceptual relationship between functional roles, players, and self-managed 

composites 

 As well as being a container that aggregates contracted roles, a composite-player 

must present a functional interface(s) that is compatible with the external role(s) it 

plays. (As a player can play more than one role, it may present a number of such 

interfaces). It follows that, to be well-formed, the composite must have internal roles to 

which it can delegate messages that pass over these interfaces, unless, as discussed 

below, the composite provides such functionality itself rather than delegating it to a 

sub-role.  
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 As we described in Chapter 5 (Figure 5.9), a functional role-player follows the 

principle of blind communication. The player is unaware of the structure of the 

organisation in which it plays a role. It is the external role that is aware of its local 

structure. While a role is aware of the external structure, a composite is aware of its 

own internal structure and acts as a message router. As shown in Figure 7-2 below 

(which extends Figure 5.9) a composite (Player1) receives incoming messages from the 

external role it plays (RoleA) then delegates these messages to the appropriate internal 

role (r1 or r2) depending on the type of message. In the ROAD framework, the routers 

in both roles and composites are implemented as Role-Message tables. Every role and 

composite has such a table. The records in these tables associate message types with 

role instances. The records in a composite’s message-role table are updated by the 

composite’s organiser as the composite is reconfigured. The implementation of these 

tables is discussed in more detail in Chapter 8. 

 

 
Figure 7-2: Self-managed composites delegates incoming messages to its roles 

 A number of issues arise with this conception of self-managed composites. The 

first is whether players that play the roles within a composite are also conceived as 

being “within” the composite, or external to it. Functional players are always separable 

from their roles, and may be separable from the composite. What ‘separation’ means 

here can vary. The players may be closely coupled to the implementation of the 

composite, for example, they may share the same deployment package. Or some 

players may have the power to create other players to play roles in the composite. The 

player may be in a different package, but be in a runtime environment that is shared 

with the composite. Or the player may be in a completely separate runtime and 

organisational context, as is the case if the player is a Web Service from an external 
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provider. Given this range of possible ‘degrees of separation’, the ROAD framework is 

agnostic as to whether or not players are a part of the composite. 

 A second issue is whether the composite-player performs any domain function, or 

whether the composite delegates all function to the roles it aggregates.  Related to this 

issue is whether or not the composite (“organisation”) maintains state, as discussed in 

Chapter 5 (Section 5.6.2). In the current implementation of ROAD, composite players 

are purely structured containers that perform no domain function in themselves, and 

maintain no domain state2. This approach has an aesthetic appeal in that role and 

composite are the inverse of one another, as can be seen from Figure 7-2 above. 

However, this does not preclude an application developer extending the abstract 

composite class to include the implementation of domain functionality.  

7.2. Organisers 
Each self-managed composite has an organiser. Consistent with the principle of 

separation between process and control in the ROAD framework, the organiser 

function can be separated into an organiser role that provides the mechanisms 

(operations) to manipulate a composite, and a player that controls the reconfiguration. 

 Figure 7-3 below reproduces the illustration of our Widget Making Department 

composite from Chapter 4.  The WidgetDepartment wd plays the WidgetMaker role 

instance wm in the Manufacturing Division composite. The WidgetDepartment composite 

has an organiser role wdo played by op1. 

 

                                                 
2 In contrast to ROAD, PowerJava (Baldoni, Boella and van der Torre, 2005) extends the object-oriented 
paradigm and Java programming language with a pre-compiler to implement organisational roles and 
“institutions”. This approach has many similarities to ROAD in that institutions (similar to ROAD 
composites) define roles that are played by players. A major difference in the approaches is that in 
PowerJava institutions perform domain functions and maintain domain state themselves. Institutions give 
‘powers’ to the object playing the roles, and there is no organiser role.  
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Figure 7-3: Example of recursive structure  of self-managed composites 

7.2.1. Organiser roles 
The organiser role maintains a representation of its self-managed composite and has 
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WidgetDepartment, the organiser wdo sets the Role-Message  table so that all 

widget orders from the ProductionManager pm in the ManufacturingDivision are 

delegated to the Foreman f in the WidgetDepartment composite.  

Regulation operations 

• Monitor the actual performance of contracts in their self-managed composite. 

This can occur through the contract notifying its organiser of underperformance 

or breach. Alternatively, the organiser can poll its contracts. 

• Change the state of a contract, e.g. from active to suspended, as described in 

Chapter 6. 

• Update the required performance in the terms of a contract. 

• Change the conditions in both general clauses and terms of a contract.  

In order to carry out these internal operations an organiser must maintain a 

representation of the organisation. It must know: 

• What roles and players/sub-composites it is controlling. 

• What contract-types it has available to associate those roles.  

It also needs to communicate with other organisers of any adjacent self-managed 

composites: i.e. the organiser of the enclosing composite, and the organisers of any 

sub-composites. 

• Receive non-functional requirements from organisers higher up the management 

system e.g. wdo receives a request for an increased rate of production from the 

Manufacturing Division organiser mdo  

• Transmit non-functional requirements to the organisers of any composite players 

under its control 

7.2.2. Organiser players 
The above operations and knowledge structures define a generic organiser role class. 

The role defines how to manipulate the composite. The responsibility of the player who 

plays the organiser role is to figure out what is to be done. This requires some level of 

decision making. Separating organiser roles from players allows generic functions to be 

separated from the domain-specific decision-making process. The decision-making 

functions that use domain-specific knowledge are implemented in the player. While, 

conceptually, the organiser player is separate from the organiser role, whether or not to 

implement them as separate runtime entities is a design decision. One advantage of 

decoupling the organiser role from its player is that players may vary in the intelligence 

they can apply to the decision-making process. For example, due to changing 

requirements an organiser player may be unable to reconfigure its composite in a way 
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that fulfils its external obligations. In this case, the organiser can be upgraded to a more 

intelligent model such as a deliberative agent or human operator. These functions 

require some deliberative capacity. They include:  

• Ability to select players. This requires the comparison of candidate player NFR 

characteristics (claimed and actual performance, availability etc.) and then 

deciding on the appropriate functional role-player bindings 

• Ability to decide on appropriate configurations of its composite (i.e. what roles 

and contracts to instantiate) in order to remediate changing NFRs or changing 

performance of its players. Any such reorganisation must maintain the 

composite’s viability. For example, if the structure is based on a bureaucracy, the 

organiser must ensure that proper chains-of-responsibility (i.e. supervisor-

subordinate chains) are maintained to preserve the functional flow-of-control. 

• Translation of non-functional requirements (NFRs) that are provided by the 

enclosing composite, to NFRs for contracts within the organiser’s composite. 

These NFRs set the expected performance for a role under some term of the 

contract. For example, a WidgetDeptOrganiser player needs to translate a 

requirement for widget throughput into NFRs of contract terms related to rate of 

thingy production, as illustrated in Figure 7-5 below. 

• As ROAD contracts are binary, a single contract cannot represent interaction 

dependencies between more than two parties (e.g. Party A must ask B to do x 

before it can ask C to do y). The organiser is responsible for coordinating such 

interaction. It does this by setting conditions in the form of executable assertions 

in the contracts. These assertions are dynamically updated to ensure any ordering 

constraints involving more than two parties are enforced.  

The organiser player may also need to perform a number of functions that require 

interaction with the external environment. In the current state of the ROAD framework, 

these functions have not yet been implemented, but they are included here to complete 

the conceptual picture. They include:  

• Ability to discover functional-role players that are candidates to play roles. 

• Negotiation of service level agreements (SLAs) with external service providers. 

As pointed out in Chapter 6, internal ROAD contracts may be mapped to external 

SLAs when the player is, for example, a Web service provided by another 

business organisation.  

• If the system is a control system that is dynamically responding to perturbations 

in the environment, unstable feedback loops can be created. The organiser may 

need to regulate NFRs to dampen such oscillations.  
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• The costs of reconfiguration may also need to be modelled by the organiser, so 

that any benefit gained from the restructuring is not lost due to, for example, time 

delays incurred by the restructuring process itself.  

It should be noted that the above organiser-player capabilities only address non-

functional reconfiguration and regulation as defined in Chapter 3 (i.e. ontogenic 

adaptation). Automated functional composition is a difficult problem and has been the 

focus of much research. While some of the dynamic architectures we discussed in the 

literature review in Chapter 3 propose ways to ensure functional compatibility at the 

syntactic level, the reliable composition of components that are semantically and 

interactionally compatible is still an open problem. Altough it is conceivable that a very 

smart artificial organiser could functionally construct composites, given the current 

state of research, we assume functional configuration is performed by a developer at 

design time. This means that the basic role and contract types that make up a composite 

type are predefined and cannot be changed at runtime. The framework allows for the 

reconfiguration of composites and the swapping of role-players in response to changes 

that lead to differences between required and actual performance. However, organisers 

in the current framework do not have the ability to compose new functions or create 

new types of association. A valid functional composition is assumed as a starting point.  

7.2.3. Adaptive behaviour within a composite 
An example of a generic decision-making process performed by an organiser is 

illustrated in Figure 7-4 below. Starting from the top-left of the flowchart, the organiser 

receives NFRs from the enclosing composite. It needs to translate these composite non-

functional requirements (NFRs) into NFRs for terms in the contracts it controls. The 

organiser also monitors the actual performance of its contracts either actively (polling) 

or passively (waiting for a notification from the contract). If there is a mismatch 

between the actual and required performance (either because the requirements in the 

contract have been changed, or because the actual performance has decreased), the 

organiser attempts to mitigate this underperformance by reorganising its composite. 

The organiser chooses a strategy determined by the actual and claimed performance of 

the existing player and other available players. The actual-performance of a role-player 

pair is the historical performance measured as interactions pass through the contract. If 

a new player is allocated the role, then this actual performance data must be reset. In 

the absence of historical performance data, claimed-performance information could be 

obtained from a specification provided by the developer of the player or a third party 

accreditor. 
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Figure 7-4: Example of a decision making process of an organiser 
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constitutes a management system3 that can be described and controlled independently 

from the players that interact directly with the application domain. 

 This network of organisers is analogous to the management-systems that exist in 

man-made organisations. For example, the management structure or financial system in 

a manufacturing business can also be described at a separate level of abstraction from 

the functional processes that transform labour and material into products. Management-

systems maintain some form of representation of the requirements and current state of 

the underlying functional system.  These models will vary depending on the variables 

that need to be controlled in order to maintain the system’s viability (ability to survive 

and fulfil its function) in its environment, as we have previously discussed in Section 

2.3. 

 An organiser provides the management interface to its composite and interprets the 

regulatory control messages that flow through this network into terms for the contracts 

within its composite. These messages are non-functional requirements expressed in 

terms of metrics. Each metric is associated with a utility function, and these utility 

functions are in turn associated with contract terms, as shown in Figure 6-3 of Chapter 

6. Non-functional performance requirements flow down the management hierarchy, 

and information on the performance of the managed composites (actual or claimed) 

flows up. As defined above, it is the organisers’ responsibility to translate these 

messages into NFRs that are applicable to the contract terms in the various contracts it 

controls. 

 We will call these two regulatory control-message flows, respectively, top-down 

requirement/constraint-propagation and bottom-up performance-monitoring. We will 

illustrate their dynamics in the next section. 

7.3.1. Adaptive behaviour across composites 
The structure and adaptive behaviour of a management-system will be illustrated with 

our WidgetDepartment example. As shown in Figure 7-3 above, the WidgetDepartment 
(wd) plays the WidgetMaker role within the ManufacturingDivision. The relationship 

between functional requirements and NFRs is illustrated with a production scheduling 

problem. We need to keep in mind that in an open system, the time taken to execute a 

function may vary or come at a cost.  

                                                 
3 In (Colman and Han, 2006) we refer to this management system as a coordination system. We have 
changed the terminology here to emphasise that this system involves more than just synchronisation, for 
example it handles QoS concerns.  
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Requirement and constraint propagation. 

Performance requirements pass down the hierarchy of organiser roles to alter the 

performance requirements of the contracts. In our ManufacturingDivision the 

ProductionManager receives (from above) orders for widgets. It determines the priority 

of the orders, and passes these on to the WidgetMaker role (as determined by the contract 

C1). The ManufacturingDivisionOrganiser (mdo) receives performance requirements and 

constraints, and in turn adds derived NFRs to the contract C1. For example, the contract 

may require that widgets be made within certain time constraints, or that certain 

resource costs not be exceeded. The WidgetMaker role is played by the WidgetDepartment 
(wd) self-managed composite. The performative level of contract C1 allows the 

ProductionManager pm to invoke the WidgetDepartment do_widgetOrder(…) method. To 

fulfil its obligations under the C1 contract, the wd must organise the production of 

Widget components, i.e. thingies and other parts (not shown) at a rate specified in the 

contract.  

 The Foreman f is a delegate (as discussed above in Section 7.1) for the 

WidgetDepartment’s interactions with the WidgetMaker role, and provides the 

implementation of the composite’s functional interface. Via this interface, the Foreman f 
receives orders for widgets, and in turn allocates work to, among others, the 

ThingyMakers (tm1, tm2 etc as shown in Figure 7-3). The Foreman can do this under the 

terms of the Foreman-ThingyMaker contracts (instances C2 and C3) by invoking 

ThingyMaker’s do_makeThingy() method. While the contracts C2 and C3 have the 

same form, these instances of the Foreman-ThingyMaker contract have different 

performance characteristics written into their respective contract schedules. Suppose 

the role-player attached to tm1 has a claimed performance of 10 thingies per hour, while 

the role-player attached to tm2 claims only to make 5 thingies per hour. The Foreman f 
(party to contracts C2 and C3) can use this performance capacity information in the 

schedule when deciding to whom the work should be allocated.  

 Required-performance information on goals and constraints is transmitted through 

the organiser roles. In Figure 7-5 below, the organiser role of the WidgetDepartment 
composite (wdo) receives NFRs from the organiser above it in the management 

hierarchy (mdo). These NFRs (which are stored in contract C1) include the requirement 

that the player playing the WidgetMaker role has a certain throughput of widgets. The 

organiser of the sub-composite (wdo), then reinterprets these into measurable 

performance requirements for the contracts it controls (e.g. C3). To achieve the required 

widget throughput, it follows that there must be sufficient rate of thingy production. 
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Figure 7-5: Interactions between an organiser role (wdo) and the organiser of enclosing 
composite (mdo). 

(Detail from Figure 7-3 on page 123) 

 Note that these NFRs flow over a management network of organisers and contracts 

(dotted arrows Figure 7-3 and Figure 7-5). This network is distinct from the functional 

network over which the process is enacted. The functional structure is a network of 

functional roles and their players (i.e. solid lines in Figure 7-5 representing the 

functional role-player binding and functional role-role relationships). These two 

networks intersect at the contracts, which are points at which management exerts it 

regulatory control. 
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WidgetDepartment wd with another player that can play the WidgetMaker role (e.g. an 

outsourced service), or alternatively create another WidgetMaker role and player to 

take some of the load.  

 The above organiser operations are necessary for a composite to meet changing 

operational requirements. However, as pointed out in Chapter 2, adaptive management 

may also include higher levels of control that involve anticipation of the future and the 

planning of changes (Systems FOUR and FIVE in the Viable System Model (Beer, 

1979)). For example, in Figure 7-3 above, if wdo detects that the thingyMakers will be 

over-loaded, it may ask mdo for resources to get more thingyMakers. Such escalation can 

be viewed as an organised form of exception-handling, where performance messages 

flow up through the management-system before failure occurs in the functional system. 

Just as an animal detecting a threat will increase its adrenaline levels to stimulate the 

heart rate for flight or fight, so the management-system detects stress on the system 

then changes the parameters of contracts (or reorganises them) in an attempt to avert 

system failure. Such proactive management would involve capacity planning, where 

management tries to estimate the future demand and then tailor the system’s 

configuration to meet that demand. This would require that higher-level organisers 

have the ability to query lower-level organisers as to the capacity of their composites 

given particular resource constraints. These lower-level organisers would need to 

calculate such capacity, a process that may involve querying the next level below, and 

so on. To achieve this anticipatory adaptivity, organiser player would need the ability to 

reason about capacity and resources particular to a domain. Protocols between 

organiser roles that would permit negotiation of NFRs and constraints would also be 

required. The examination of such advanced adaptive techniques provides a promising 

area for future research, but is beyond the scope of this thesis.  

7.4. Summary 
In this chapter we have described how role, players and contracts are structured into 

self-managed composites. These composites are themselves role-players which enables 

an application to be structured as a reconfigurable recursive hierarchy. Composites hide 

their internal structure by delegating incoming messages to appropriate internal 

functional roles. Each composite has an organiser role. Organiser roles provide the 

means by which composites can be restructured by creating new functional roles, by 

creating contract between roles, or by changing the binding between functional roles 

and their players. Organiser roles also regulate the composite by monitoring and 

changing the clauses in the contracts they control. Organiser roles have players who are 

responsible for deciding what reconfiguration or regulation is necessary as 
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requirements or conditions change. Organiser players are separable from their roles, 

and may be of varying capability. 

 Organiser roles provide a management interface to their composite. The organisers 

of composites in a recursive hierarchy are connected via these interfaces. This network 

of organisers and the contracts they control constitutes a management system over 

which non-functional requirements and performance information pass. This network 

facilitates the operationalisation of goals down through the structure, and the escalation 

of any performance deficits or problems that lower level composites can’t handle to 

higher levels.  

 Treating the management system of a software application as a concern separate 

from the functional system, allows to us to represent the application at a higher level of 

abstraction. This organisational level of abstraction allows us to modulate the 

behaviour of the structure by dynamically representing and manipulating non-

functional attributes and performance over that structure. By representing software at 

this organisational level, we may also be able to start to build a “management theory” 

of software that can help us design and evaluate software. 

 To conclude this chapter and this part of the thesis, the UML diagram of ROAD 

concepts in Figure 7-6 below provides an overview of the ROAD concepts discussed in 

Chapters 4 to 7. These concepts are the meta-model on which the ROAD framework is 

based. The implementation of this meta-model as a class framework is described in Part 

III of the thesis.  
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Figure 7-6: Summary of relationships between ROAD concepts
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8   
 
Framework Implementation 

The ROAD conceptual model, described in the previous part of this thesis, defines a 

flexible structure that supports indirection of association and instantiation, and provides 

a way to manage such indirection. The approach we have taken to creating adaptive 

systems is to develop a domain-independent framework that implements the ROAD 

meta-model. The application developer extends this framework by writing domain-

specific organisational code. In this chapter we describe the framework and some key 

aspects of its current proof-of-concept implementation. An application built on this 

framework is then described in the following chapter (Chapter 9).  

 The implementation of the ROAD framework not only has to provide a scaffold on 

which the developer can structure the specific application, but needs to do this in a way 

that is practical for the developer, and does not introduce unnecessary dependencies 

that reduce adaptivity. The ROAD framework reduces the load on the application 

developer by providing reusable abstract classes that hide the complexity of the 

adaptive mechanisms in ROAD. Unnecessary dependencies are avoided by maintaining 

a separation of concerns between organisational code and functional code. These two 

concerns can be independently modified, and the organisational constructs can be 

superimposed post facto onto the functional code.  

 In this chapter we begin by describing the framework-based approach we use to 

implement adaptive software, and then we give an overview of how the concepts 

described in the previous part of the thesis map to key abstract classes in the 

framework. The subsequent sections then describe in more detail the Java 

implementation of these key ROAD concepts; namely, roles, contracts, self-managed 

composites and organisers. In particular, we describe a novel use of a type of 
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instantiable aspect called an “association-aspect” to implement contracts at the 

performative and functional levels. We then discuss the work that could be done to 

further develop the ROAD framework and what tool support is needed by developers to 

make practical the development of adaptive software organisations. 

8.1. A framework-based implementation 
Our implementation of the ROAD framework separates code into independent 

packages: domain-independent organisational code; domain-specific organisational 

code; and domain-specific functional code. Figure 8-1 below illustrates these three 

concerns:  

  
 

 
Figure 8-1: Organisational code based on the ROAD library package can be written as a 

separate concern from the functional code 

 1. Domain-independent organisational code is a reusable library that defines 

abstract classes for functional roles, contracts, organiser roles, composites and utility 

functions. This library also defines abstract performative contracts that enforce 

prototypical interaction control patterns (e.g. a Supervisor-Subordinate contract). If the 

abstract performative contracts provided by the ROAD library do not express the 

necessary control relationships, new abstract contracts can readily be defined.  

 2. Domain-specific organisational code. The programmer creates domain-

specific roles, contracts, composites and organisers based on the abstract classes in the 

ROAD library package. Domain-specific utility function classes are also written to 

extend the abstract utility class. These utility functions allow performance requirements 

to be specified and enforced for interactions between the particular functional roles that 

are bound by the contract.  Domain-specific organiser players are also created to 

implement specific adaptation strategies.  

 3. Domain-specific functional code consists of entities that will play the roles in 

the organisation. Classes representing these can be written without defining the 

configuration of the organisation in which they will participate. As players have to be 
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compatible with the roles they play, it may also be necessary to write adaptors that can 

resolve any mismatch between role and player interfaces. As ROAD provides a 

heterogeneous framework, it may also be necessary for these adaptors to translate 

between implementation technologies, for example between the Java invocations in the 

ROAD organisation, and the SOAP messages of a Web-service player.  

 
The organisational code from the organisational packages is compiled using a modified 

AspectJ ‘association aspect’ compiler (Sakurai, Masuhara, Ubayashi et al., 2004)1 to 

create an adaptive application. The roles in this application are then bound at runtime to 

their players. Figure 8-2 below is an implementation version of the conceptual model 

presented in Figure 7-6 at the end of the previous chapter.  

 

 
Figure 8-2: The ROAD Framework library and an example domain-specific application 

The class diagram of the domain-independent organisational ROAD library only shows 

the abstract classes and interfaces that application extends with domain-specific code. 

The other supporting classes that were shown in the conceptual diagram (e.g. 

                                                 
1 The Association Aspect compiler and source code is available for download at 
http://www.komiya.ise.shibaura-it.ac.jp/~sakurai/aa. The provided installer installs the compiler and 
runtime library in the same manner as AspectJ. Programs are compiled in an identical manner to AspectJ 
by using the ajc command. At the time of writing the Association Aspect compiler was based on AspectJ 
v1.2. 
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MessageRoleTable) will be discussed in the subsequent sections. The figure also shows 

how a domain-specific organisation, in this case the WidgetDepartment composite from 

our running example, is created by extending the ROAD framework. Java interfaces are 

denoted by the class name prefixed with an “I” e.g. IPlayer. The domain-specific 

functional code (i.e. the players) can be created and compiled independently from the 

organisational code.The following sections will look at the above model in more detail. 

8.2. Roles 
In Chapter 5 we defined the concept of an organisational functional role. To recap, the 

properties of such roles are: 

• A functional role is a first-class entity that defines a position within an 

organisational structure. It defines an abstract function that is the aggregation of 

its obligations set out in the terms of the contracts to which it is party. 

• Functional roles can also be classified as playing a performative role with respect 

to each particular role-role relationship in which they participate (as shown in 

Figure 8-2 above a functional role inherits from an empty performative role 

interface that allows them to be bound into performative contracts). 

• A role provides a router so that outgoing messages from its player can be sent to 

the appropriate associated role (contracted party). 

• Roles provide a message queue for incoming messages so that the role’s function 

is still viable in the case of its player being temporarily unavailable. 

• Roles may also need to have adaptors added to enable them to talk to players of 

various types.  

The ROAD framework provides an abstract class FnRole that provides functionality 

such as keeping track of the contracts to which the role is a party, message queuing and 

routing. We will now look at how each of these properties has been implemented in the 

ROAD framework. 

8.2.1. Roles as abstract function. 
As described in Chapter 5, functional roles present two categories of interface. These 

interfaces are illustrated in Figure 8-3 below. The first category of role interface is 

associated with another role via a contract (f1 and f2 in the diagram). The totality of 

these contracted interfaces represents an abstract function of the role with respect to its 

organisation. The other type of role interface is its interface to its player (f3 in the 

diagram). Remember that in ROAD the role performs no domain function in itself, but 

rather all process is executed by the player. The role-player interface f3 is, therefore, 
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merely a re-expression in complementary form2 of the role-role interfaces (f3 = 

Σ(f’1,f’2) where Σ is some aggregate re-expression and f’n is the complement of 

the interface fn).  The interface the player presents to its role (f4) can therefore be 

regarded as some form of aggregation of its role’s organisational interfaces 

(Σ(f1,f2)).     

 
Figure 8-3: Relationship between role and player interfaces 

 If these interfaces only express the syntax of required and provided method 

signatures, then the aggregation Σ is straightforward: the role merely retransmits the 

message. However, as described in Section 5.4, a functional role may also specify 

performance requirements, interaction protocols, authority relationships and access to 

resources. In ROAD these non-functional requirements (NFRs) are defined in contracts 

that bind the role (nfrs1 and nfrs2 in Figure 8-3). The implementation of contracts is 

discussed in the next section. However, it is possible that the desirable NFRs for a role 

may be conflicting and need to be balanced against each other. This aggregation of 

NFRs is a task of the composite’s organiser (as described in Chapter 7). The current 

implementation of roles does not express an aggregated “position description” of non-

functional requirements that could be used to automatically match compatible roles and 

players. We leave the development of NFR aggregation, and automatic search and 

selection to future work. However, the inability to match NFRs is not necessarily fatal 

in ROAD. An advantage of the ROAD approach is that its contracts enact exogenous 

measurement of performance, and can also enforce protocols. A player can always be 

bound to a role on a “suck it and see” basis, even if its performance claims or 

characteristics are uncertain. If the actual performance of the player is satisfactory, in 

terms of the role’s contracts, it will be retained. If not, alternative players could be 

sought. 

                                                 
2 Where required interfaces become provided interfaces, and vice versa 
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8.2.2. Roles as message routers 
In ROAD, it is the roles rather than the “blind” players that represent the structure of 

the organisation. A role needs to be aware of the contracts that bind it, and needs to be 

able to route outgoing messages from its player to the appropriate associated role (as 

shown in Figure 8-3). We implement this structure by means of a MessageRoleTable 

which contains a dynamic number of MessageRoleRecords as shown in Figure 8-4 

below. Each record associates a message signature with one or more role instances that 

can handle that message. For example, a Foreman role may have an entry in the table 

that associates a do_makeThingy() method invocation with objects of type 

ThingyMaker. In some circumstances a role might be contracted to multiple instances 

of roles of the same type (e.g. in our example shown in Figure 7-3 the Foreman role 

instance f has contracts with two ThingyMaker roles, tm1 and tm2). Such multiplicity 

of role relationship is allowed if the Boolean field isMultipleAllowed is set to true. 

Where there are a number of possible role instances to which a message can be sent, 

some sort of allocation scheme is required to determine which role instance receives the 

message. Allocators are created by the application developer to implement a method 

that returns the appropriate role to which the request will then be allocated. Allocation 

schemes can be simple (a default round-robin scheme is provided by the framework) or 

can be more complex domain-specific schemes based on the capabilities of the players. 

More details on our implementation of message allocation can be found in (Pham, 

Colman and Han, 2005). 

 .  

 
Figure 8-4: Role related entities 
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 Each entry in a MessageRoleTable reflects a term in one of the contracts to which 

the role is a party. Entries are maintained by the composite’s organiser as it adds and 

removes contract terms. 

8.2.3. Message queuing in roles 
As discussed in Chapter 5 (5.6.1), roles are also responsible for preserving 

communication state, thus ensuring that the organisational structure remains viable 

when a player is temporarily unavailable, e.g. during the swapping of a role’s player. 

Messages coming into the role are placed in an incoming queue. Each role has an inner 

MessageProcessor class as shown in Figure 8-4. When the player becomes available, 

the MessageProcessor extracts the message from the FIFO queue and sends it to the 

player. Because the current implementation of ROAD is written in Java, method 

invocations to the role have been encapsulated into messages so they can be stored. 

This approach has been adopted, rather than using message-oriented middleware, 

because it accords with the aspect-based method interception used in the ROAD 

contracts. 

 The use of incoming queues accords with a “push” or command-driven form of 

organisation; that is, an organisation where process is executed by the flow of 

commands down through the organisational structure. Using our example, the Foreman 

role would invoke a do_makeThingy() operation in the ThingyMaker.   The 

Foreman does not have to worry whether or not the ThingyMaker role has a player 

attached, because the message will be stored in the ThingyMaker’s queue (its “in-

tray”). Such incoming queues can be bounded so that the ThingyMaker does not 

receive too many “pending” tasks. It follows that, in a push model, there needs to be 

some sort of notification back to the requester if the in-queue is full3.  

 An alternative to the push mode of organisation is a “pull” model. A pull-model is 

demand-driven. Request messages are placed in a pool (an out-queue on the role), and 

retrieved by the role(s) that service that request when they are ready. The demand-

driven mode of organisation removes the need for the requestor role to keep track of the 

service role’s in-queue so that it does not become too full. It also obviates the need for 

a proactive allocation scheme if there is more than one role of the same type (e.g. 

multiple ThingyMakers). However, there are some complications associated with the 

                                                 
3 In a push model the issue arises of what happens to the sent messages if the role fails. It might be thought 
that some form of compensation scheme is necessary to retrieve the sent messages, and restore 
communication state to what it was prior to the failure. However, we would argue that this is a non-issue as 
roles do not fail (or if they do then the whole composite has failed) – it is their players that fail. If the 
player fails, it is swapped with a new one and communication state is preserved (with perhaps the 
exception of the transaction that is currently being processed).   
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pull-model. These include the need for multiple out-queues (one is needed for each 

type of message type); difficulties in request and response matching; and the 

arbitrariness in allocation (first-in, first-served) of parameterised requests that may 

require different processing capacities. For these reasons, only the push-model is 

currently implemented in ROAD.  An extended discussion of the relative merits of 

push and pull models in ROAD can be found in (Pham, Colman and Han, 2005).  

8.2.4. Role-player adaptors 
A major advantage of the ROAD approach is that it allows the possibility that 

heterogeneous players (objects, components, services, agents, etc) can play roles in a 

ROAD organisation. Rather than alter the role to match the technology of the player, 

adaptors are added to roles to match the particular technology of the player. At the 

syntactic level, ROAD role interfaces are Java calls. If the player is, for example, a 

Web service, then an adaptor is needed to convert between Java calls and SOAP 

messages. Similarly, different syntactic/technology level adaptors would be needed if 

CORBA components and agents are used.   In its current state of implementation, the 

ROAD framework supports players that are Java objects and Web services. These 

adaptors are proxies for the players, and implement an interface that represents the 

player, as shown in Figure 8-4 above. From the role’s point of view, an adaptor looks 

no different to a player.   

 As we have pointed out above, interfaces ideally should describe more than 

relationships at the syntactic level. Semantics, behaviour and QoS need also to be 

represented if complete compatibility of entities is to be assured (Han, 1998). Although 

behavioural and QoS levels are currently supported in internal ROAD role-to-role 

contracts, the mapping of these qualities to the role-player relationship is outside the 

scope of this thesis.  Extending ROAD adaptors to handle behavioural protocol 

mismatches between the role and the player is a current area of research.  

8.2.5. The role life-cycle 
Instances of roles are created and destroyed by the organiser of the composite to which 

they belong. Currently the role types available to an organiser are statically defined 

Java classes, and role objects are dynamically created in the same way as any Java 

object4. As the role is made party to contracts (or removed from contracts) its list of 

                                                 
4 However, from the discussion in the previous section, it will be apparent that everything we need to know 
about a role, other than its name, can be derived from the contracts that the role participates in. A role is a 
named position (in a role-structure) that aggregates obligations contained in the contracts which bind it. 
The actions of a role (message routing, queuing) is either generic or externally added (adaptors). Role-
types should therefore be able to be dynamically created from textual descriptions of its contracts. This is a 
task for future work.  
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contracts and its MessageRoleTable are updated. Similarly, as a player is bound or 

removed from the role, the role’s references to the player is updated (and vice-versa) by 

the organiser. A number of issues related to integrity of the role-structure arise. Role 

instances need to exist in order to create a contract between them, but what happens if 

the organiser wants to delete a role that is bound to one or more contracts? Should this 

be prevented or should there be an automatic cascade deletion of the contracts?  Can a 

role instance exist with no current contracts? Such issues are not currently addressed in 

the ROAD framework, but might be viewed as constituting an organisational “style” 

which may vary depending on the problem domain.  

8.3. Contracts 
In ROAD, all organisation-related interactions between roles, and thus by extension 

their players, pass through a contract that associates those roles. As described in 

Chapter 6, instances of ROAD contracts perform a number of functions. A contract: 

• Creates a connector between roles 

• Defines contract terms that 

1. control the types of message that can flow over the connector in either 

direction 

2. define transactions as represented by messages passing between the 

roles. These transactions can be of various types (e.g. synchronous, 

asynchronous, etc.) 

3. define performance measurement points associated with different types 

of transactions 

4. allow arbitrary utility function objects to be attached to these 

measurement  points 

5. sets required performance in terms of the metrics defined in those 

utility functions 

6. measure actual performance using only those utility function objects. 

• Can define other types of clause that set conditions on its existence (general 

clause) or define required sequences of transactions between the parties (protocol 

clause).  

In this section we will describe an implementation of the ROAD concept of contract 

that uses association-aspects. Instances of these aspects allow contracts to be defined 

that associate two5 role instances, and to intercept the messages that pass between these 

                                                 
5 Association aspects can associate more than two objects, but in ROAD we limit contracts to binary 
associations for the reasons discussion in Chapter  6.2. 



Chapter 8   Framework Implementation 145 

 

roles. Association-aspects can also support contract abstraction as described in Chapter 

6.  

 Figure 8-5 below presents a model of ROAD contracts showing some of the major 

contract related classes and their properties. This model is an implementation version of 

the conceptual model of contracts shown in Figure 6-3.   

 

 
Figure 8-5: Contract related classes 

 This model will be elaborated in the sections that follow. The current state of 

implementation of the ROAD framework does not yet include general and protocol 

clauses as described at the conceptual level in Chapter 6.  We begin by introducing 

association-aspects in the context of aspect-oriented technology and show how they can 

associate a group of objects into a contract. We then show how abstract performative 

contracts (abstract association-aspects) can be created using association aspects. These 

abstract contracts ‘intercept’ method calls based on their CCA (control-communication 

act) type. In ROAD, interaction is controlled and monitored at this abstract level. We 

then discuss in more detail the inheritance hierarchy of contracts, and the related 
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classes of terms and utilities.  We conclude this section on contracts with a discussion 

of the limitations of the current implementation of contracts using association-aspects. 

 

8.3.1. Creating contract instances using association-aspects  
Aspect-oriented methods and languages (Kiczales, Irwin, Lamping et al.,  1997) seek to 

maintain the modularity of separate cross-cutting concerns in the design and source-

code structures. Examples of cross-cutting concerns that have been modularised into 

aspects include security, logging, transaction management and the application of 

business rules. The AspectJ (Eclipse Foundation, 2004) extension to Java allows the 

programmer to define pointcuts that pick out certain join points (well-defined points in 

the program flow such as a call to a method). An advice is code that is executed when a 

join point that matches a pointcut is reached. Aspects encapsulate such pointcuts and 

advices. These units of modularity can model various cross-cutting concerns. A short 

glossary of the key AspectJ terms is provided in Figure 8-6.  

 
An Aspect J Glossary 
AspectJ 
AspectJ extends the Java language with constructs that allow the encapsulation of 
concerns (aspects) that crosscut standard classes. AspectJ provides a compiler that 
weaves aspect code through the base code at compile-time. As of version 1.5 post-
compile (binary) and load-time weaving are also supported. 
Joinpoint 
A join point is a well-defined point in the program flow. AspectJ can access a variety of 
join points including method call and execution, constructor call and execution, read or 
write access to a field, and exception handler execution. 
Pointcut 
A pointcut picks out certain join points and values at those points. For example, the 
pointcut  
call(void Point.setX(int)) picks out each join point that is a call to a method 
that has the signature void Point.setX(int) — that is, Point's void setX 
method with a single int parameter. Pattern matching can be used to pick out join 
points. Pointcuts can also be named and composed from other pointcuts using the && 
(and), || (or), and ! (not) operators. 
Advice 
A piece of advice is code that is executed when a join point defined by a pointcut is 
reached. In AspectJ advice can be run just before or after a pointcut is reached at 
runtime. Because Java programs can leave a join point 'normally' or by throwing an 
exception, there are three kinds of after advice: after returning, after 
throwing, and after (which covers both the other cases). Around advice allows 
alternative code to be executed.  
Aspect 
An aspect brings together a pointcut and an advice to define aspect implementation. 
The aspect runs advice at join points picked out by the pointcut. 

 Figure 8-6: Glossary of AspectJ terms 
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 While AspectJ-like aspects have previously been used to add role behaviour to a 

single object (Kendall, 1999), as far as we are aware they have not been used to 

implement associations between roles. Aspects, as they are currently implemented in 

AspectJ, do not easily represent the behavioural associations between objects (Sullivan, 

Gu and Cai, 2002). While current implementations of AspectJ provide per-object 

aspects, these have to associate a unique aspect instance to either the executing object 

(perthis) or the target object (pertarget). When an advice execution is triggered in an 

object, the system looks up the aspect instance associated with that object and executes 

that instance. The per-object approach allows the aspect to maintain a unique state for 

each object, but not for associations of groups of objects. In order to implement 

contracts, we need aspect instances that bind groups of objects, and that can be created 

and destroyed in the same way that objects are created and destroyed. 

 Sakurai et al. (Sakurai, Masuhara, Ubayashi et al., 2004) developed association-

aspects to enable an aspect instance to be associated with a group of objects6. 

Association-aspects meet the expressive requirements for implementing contracts as 

defined above, and are implemented with a modification to the AspectJ compiler.  

 Association-aspects allow aspect instances to be created in the form  

MyAssocAspect a1 = new MyAssocAspect (o1, o2, … , oN); 

where a1 is an aspect instance and o1…oN are a tuple of two or more objects 

associated with that instance. Association-aspects are declared, as in Listing 8-1 below, 

with a perobjects modifier (rather than perobject) that takes as an argument a tuple of 

the associated objects. The ability to represent the associative state between objects in a 

group makes association-aspects suitable for representing contracts as we have defined 

them (Colman and Han 2006c). Using our running example above, the declaration of a 

concrete contract to bind two objects of type Foreman and ThingyMaker would be as 

follows: 

 
public aspect FTContract extends SuperSub perobjects(Supervisor, 

Subordinate){ 
 private Foreman f;  //implements the Supervisor interface 
 private ThingyMaker t; //implements the Subordinate interface 
 public FTContract(Foreman f, ThingyMaker t) { 
  associate(f, t); //creates the association-aspect 
  this.f = f; 
  this.t = t; 
  ...  
 }  
 //contract term pointcut definitions and advice 
  ...} 

Listing 8-1: Declaring a concrete contract 
                                                 
6 In the AOP language Eos (Rajan and Sullivan, 2003) aspects can also be created to represent behavioural 
relationships, however Eos always selects advice execution associated with a target object. 
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 The associate(f, t) method that binds the objects in the association, is 

automatically defined when the perobjects modifier is used. The modifier also 

defines a delete() method that revokes an association. In contrast to perobject 

aspects in AspectJ, the creation and destruction of association-aspects instances is 

explicit.  

8.3.2. The contract hierarchy  
As can be seen from the declaration of FTContract in Listing 8-1 and from the class 

model in in Figure 8-5 above, concrete contracts inherit from the abstract performative 

contracts (such as Supervisor-Subordinate, Peer-Peer, Auditor-Auditee etc.). In the 

example, FTContract inherits its control behaviour from the Supervisor-Subordinate 

contract SuperSub. Performative contracts in turn inherit from the abstract aspect class 

Contract.aj  

8.3.2.1. The root aspect – Contract.aj 
This top-level aspect contains pointcut declarations that define types of method 

invocation. These types are the CCA (Control-Communication Act) abstract methods 

we introduced in Chapter 6. In the current implementation of the ROAD framework, 

the CCA of a method is indicated by a prefix on the method name7. For example, an 

invocation to perform some action is represented by a do_ prefix, as in 

do_makeThingy(). The named pointcut to trap calls to this method would therefore 

be  

 pointcut doIt() : call(public * FnRole+.do_*(..)); 

which matches a public method whose name starts with “do_”, that returns any type, 

has any parameters, and is in a class that inherits from the functional role abstract class 

FnRole. Listing 8-2 below shows the Contract aspect definition with some of its CCA 

pointcuts. Using the OR operator || to combine pointcuts, it is possible to define a 

named compound pointcut allCCAs()  that represents all valid organisational  

communication between roles. This allows us to prevent any object that is not of type 

FnRole calling CCA methods, as we will discuss below (Listing 8-5).  

 The abstract aspect Contract.aj is also responsible for maintaining references 

to the roles bound to the contract and providing the data structures storing the terms of 

the contract. Consequently, it implements methods for adding, removing and getting 

parties and terms. Note that Contract.aj is a standard AspectJ aspect (not an 

                                                 
7 Since AspectJ v1.5 it has been possible to define pointcuts on Java annotations. This is a less intrusive 
way to indicate the control semantics of a method, rather than altering the method name. However, CCAs 
have not yet implemented this way as the Association-Aspect compiler is based on AspectJ v1.2.   
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association aspect) as it only defines some general pointcuts, data structures and 

methods. 

 
public abstract aspect Contract 
{ 
    // FnRole+ is any subclass of FnRole 
    pointcut doIt() : call(public * FnRole+.do_*(..)); 
    pointcut setGoal() : call(public void FnRole+.setG_*(..)); 
    pointcut inform() : call(public void FnRole+.inf_*(..)); 
    pointcut query() : call(public * FnRole+.qry_*(..)); 
    ...  
    pointcut allCCAs() :  doIt() || setGoal() || inform() || query() || 
    resAlloc() || resReq(); 
    ... 
 
    protected Vector terms = new Vector(); //The list of terms for 
contract 
    protected FnRole partyA; 
    protected FnRole partyB; 
    protected Organiser organiser; 

       … 
Listing 8-2: The top-level abstract aspect Contract.aj 

8.3.2.2. Abstract performative contracts  
In the ROAD framework, it is the performative-level of the contract hierarchy that does 

most of the work at runtime. Performative contracts such as SuperSub extend the 

aspect Contract by defining the terms of the contract at the level of abstract 

messages. They take the CCA patterns (pointcuts) defined in the super aspect 

Contract.aj, and combine them with abstract pointcuts that indicate the direction of 

communication.   

 These directional pointcuts are called aToB and bToA to indicate communication 

sent from party A to B, and B to A respectively. Performative aspects are association-

aspects, taking the objects (in our case abstract interface references to the role 

instances) that are bound in the contract as arguments to the perobjects modifier. 

This mechanism allows us to create pointcuts for the role instances that have been 

associated in the contract. For example the abstract pointcut aToB is defined in the 

performative contract as shown in Listing 8-3 below 

protected abstract pointcut aToB(Supervisor sup, Subordinate sub); 

 This abstract pointcut is made concrete in the concrete contract (e.g. 

FTContract) as follows: 

protected pointcut aToB(Supervisor a, Subordinate b): this(a) && 
target(b) && associated(a, b);      

where a and b are functional roles that implement, respectively, the Supervisor and 

Subordinate interfaces. This pointcut specifies that the invocation is made by from 

party a to party b; i.e. the Supervisor a (this(a)) and to target Subordinate b 
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(target(b)), and that a and b are associated in a contract (associated(a,b)8). In 

this way we can create pointcuts that define contract terms, such as a1 in Listing 8-3, 

that contain both a CCA pattern and a direction of invocation for the role in the 

contract. In other words, we can control the type of thing that can be said by one party 

(role) to another. The code below implements the example specification of ‘who can 

say what’ for a Supervisor-Subordinate contract as set out in Chapter 6 (Table 6-2). 

Note also that compound pointcuts such as a0 can be created that represent all the 

types of communication one party can say to the other. 

public abstract aspect SuperSub extends Contract perobjects(Supervisor, 
Subordinate) 
{ 
 protected abstract pointcut aToB(Supervisor sup, Subordinate sub); 
 protected abstract pointcut bToA(Supervisor sup, Subordinate sub); 
  
 //Supervisor invocations - Subordinate obligations 
 pointcut a1(Supervisor sup, Subordinate sub): doIt() && aToB(sup, sub); 
 pointcut a2(Supervisor sup, Subordinate sub): setGoal() && aToB(sup, sub); 
 pointcut a3(Supervisor sup, Subordinate sub): inform()  && aToB(sup, sub); 
 pointcut a4(Supervisor sup, Subordinate sub): query()  && aToB(sup, sub); 
 pointcut a5(Supervisor sup, Subordinate sub): resAlloc() && aToB(sup, sub); 
 pointcut a6(Supervisor sup, Subordinate sub): accept() && aToB(sup, sub); 
 pointcut a7(Supervisor sup, Subordinate sub): reject() && aToB(sup, sub); 
  
 //Subordinate invocations - Supervisor obligations 
 pointcut b1(Supervisor sup, Subordinate sub): inform() && bToA(sup, sub); 
 pointcut b2(Supervisor sup, Subordinate sub): query() && bToA(sup, sub); 
 pointcut b3(Supervisor sup, Subordinate sub): resReq() && bToA(sup, sub); 
 pointcut b4(Supervisor sup, Subordinate sub): accept() && aToB(sup, sub); 
 
 //compound performatives 
 //what party a can say to party b 
 pointcut a0() : doIt() || setGoal() || inform() || query() || resAlloc() || 

accept() || reject(); 
 // what party b can say to party a 
 pointcut b0() : inform() || query() || resReq() || accept(); 
 //all the things they can say to each other 
 pointcut c0() : a0() || b0(); 
 ... 
 

Listing 8-3: Example of a performative contract between a Supervisor and Subordinate 

These pointcuts only define the interception points in an interaction between two roles. 

These interception points allow us to define actions at those points using aspect advice. 

An advice is method-like code in an aspect that is executed when a pointcut is reached 

in the execution flow. AspectJ supports a number of types of advice including before 

advice (executed just before the join point is reached) and after advice (executed after 

returning normally or after returning with an error).  

 Figure 8-7 below9 schematically shows how an instance of ROAD contract (a 

SuperSub contract instantiated by ft1 of type FTContract) mediates a 

                                                 
8 The associated pointcut is provided by the association-aspect compiler. 
9 This figure should be treated as expository rather than a literal sequence diagram. Aspect-Contracts are 
not just interceptor classes that sit in between roles, but rather its pointcuts are woven into the roles 
themselves.  
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synchronous interaction between the two functional roles (Foreman f and 

ThingyMaker tm1). As described above, contracts have terms that define obligated 

transactions between the parties. The contract intercepts method calls between parties 

bound by the contract, where the signatures of those methods are defined in a contract 

term. In the case below, DO CCA calls from f (party A) to tm1 (party B) that start with 

a method name prefix do_* are intercepted. As shown in the figure, pointcuts can also 

be defined that prevent unauthorised method calls (any method call that is not specified 

in the contract) either between the parties to the contract, or from external entities.  

 

 
Figure 8-7: Synchronous transaction between roles under contractual control 

 The following code snippets from the SuperSub contract use the compound 

pointcuts a1 and b0 to prevent unauthorised communication between the parties. For 

example, the pointcut  
   aToB(a, b) && !a0( ) 

represents any communication that is from party A to B and is not of a CCA-type that 

A is allowed to invoke on B . As shown in Listing 8-4 below, a before advice is used to 

intercept the call and throw an exception if the pointcut is matched. The error string 

passed to the exception is built using AspectJ’s thisJoinPoint primitive which gives 

reflective information on the execution context. For example, this pointcut and advice 

would intercept the Foreman-Supervisor’s non-CCA request to the ThingyMaker-

Subordinate to wash_car()as shown in Figure 8-7. 
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... 
//prevent unathorised communication from a to b 
before(Supervisor a, Subordinate b): aToB(a, b) && !a0() 
{ 
  String s = "-X-> Unauthorised "+ thisJoinPoint.getKind() + " \"" + 

  thisJoinPoint.getSignature() + "\" from "+   
 thisJoinPoint.getThis().getClass().getName() + " to " + 
 thisJoinPoint.getTarget().getClass().getName(); 

  throw new InvalidCCAException(s);   
} 
//prevent unathorised communication from b to a 
before(Supervisor a, Subordinate b): bToA(a, b) && !b0() 
{ 
  ... 
  throw new InvalidCCAException(s); 
} 
... 

Listing 8-4: Restricting communication between roles in a performative contract 

 Contracts can also prevent external parties (i.e. those objects that don’t have a 

contract with the role) from interacting with the party. For example, no object other 

than a properly contracted role can invoke the ThingyMaker’s do_makeThingy() 

method: not even another Supervisor-Foreman. The following before advice can be 

used to intercepts all CCA pattern calls from non-functional role objects (those that do 

inherit from FnRole): 

 before(Object a, FnRole b): allCCAs() && this(a) && target(b) { 
    if (a != b){  //only call to other party, call within itself 

is ok 
         if (!((FnRole) thisJoinPoint.getTarget()) 
                    .isContractedTo((FnRole) 

thisJoinPoint.getThis())) 
               throw new InvalidCCAException(…); 
}} 

Listing 8-5: Intercepting unauthorised CCA calls from non-roles 

Similarly, the advice in Listing 8-6 below intercepts all calls from non-contracted 

functional roles.  

before(FnRole a, FnRole b): call(public * mContract.*.*(..)) && 
this(a) && target(b) {...} 

Listing 8-6: Intercepting unauthorised calls from uncontracted roles 

 As well as controlling interaction, abstract performative contracts define points in 

an interaction that allow performance to be measured — performance being a change of 

state from before to after a transaction. As discussed in Chapter 6, the points that are 

used to measure a transaction will vary depending on the synchronisation method (as in 

Figure 6-8). Our ‘interaction diagram’ in Figure 8-7 above shows a synchronous 

transaction between the parties. In a synchronous transaction, before and after 

returning advice associated with a contract term are used as the transaction is complete 
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when the method call returns normally. If an error occurs during the transaction this is 

caught by an after throwing advice. If the transaction is asynchronous, the post-

transaction state is measured when a method call matching a response signature is 

intercepted. As shown in class diagram Figure 8-5, asynchronous terms have a field 

that records the response signature.  In general, a subordinate’s performance is only 

measured on a DO CCA, i.e. when some action is invoked. For example, as shown in 

Listing 8-3 above, the term a1 defines a DO CCA from a supervisor to a subordinate. 

The before advice will therefore be:  

before(Supervisor a, Subordinate b): a1(a, b) 
{ 
  beforeUpdate(thisJoinPoint.getSignature().getName(), Term.A_TO_B); 
} 

Listing 8-7: A performance measurement point before the start of a transaction 

 The performance measurement advice calls either a beforeUpdate() and 

afterUpdate() method (defined in Contract.aj) that take as argument the signature 

that identifies the term of the contract and the obligated party (Term.A_TO_B is a 

constant that indicates party B is obligated). This request to update performance is then 

passed to term, which in turn calls the calculateUtility() method of its utility 

function(s).  

8.3.2.3. Concrete Contracts 
All the above implementation details are part of the ROAD framework that is 

transparent to the application developer. The task for the application developer is to 

create concrete contracts by defining the contracts’ specific terms and to implement the 

domain-specific utility functions. As discussed in Chapter 6, these utility functions 

measure the change in time or some other state. For example, the time elapsed between 

before and after advice can be used to calculate time-based metrics such as rate of 

production. Alternatively, some other utility function (such as cost) could be evaluated 

by accessing the execution context of the advice and measuring a change in state of the 

system or the environment.  

 Concrete contracts, such as the FTContract in Figure 8-5 above, allow us to 

define performance characteristics for each term of a contract object. Domain-specific 

characteristics are passed as parameters to the Term class constructor when the clause 

is created. These parameters include: a reference to the contract that the term belongs 

to; the method signature; the direction of the invocation (aToB or bToA); the 

synchronisation type; a response signature if the type is asynchronous; and a domain-
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specific utility function object that defines the performance metrics. The following 

code snippet from FTContract creates a term along with a utility function:  

  ... 
  Utility widgetUtility = new MakeThingyUtility(80, 45, 70, 100); 
  //params:  absBreachThold, targetMeanMSec, avgBreachThold, 
movAvWindow 
                                                       
  Term doMakeThingyTerm = new Term(this, "do_makeThingy", Term.A_TO_B, 

false, widgetUtility, SyncType.ASYNCHRONOUS, 
inf_thingyMade");  

  ret = addTerm(doMakeThingyTerm, partyB); 
  ... 

Listing 8-8: Adding a term and its utility to a contract 

 The abstract Utility class has a calculatePerformance() method that can 

be overridden by a concrete domain-specific utility sub-class (such as 

MakeThingyUtility in Figure 8-5). Once the performance of a term is calculated, its 

state will be reported to the contract, if it is in breach or is underperforming. The 

contract, in turn, notifies its organiser of any underperformance. 

 In order for the functional-role classes to be able to work with performative 

contracts, they need to implement the empty interfaces that represent any applicable 

operational-performative roles such as Supervisor or Subordinate (as shown in 

Figure 8-2 above). They also need to extend the abstract functional role class FnRole. 

The creation of these dependencies does not require the alteration of the pre-existing 

functional roles but can be achieved by using an aspect with an inter-type declaration. 

Such declarations can create, at compile-time, the inheritance relationships and 

interfaces for functional roles. For instance, the following creates the inheritance 

relationships for the ThingyMaker and DooverMaker classes:  

declare parents: {ThingyMaker || DooverMaker} extends FnRole 
implements Subordinate; 

Some roles, such as Foreman, would implement both Supervisor and 

Subordinate interfaces. 

8.3.3. Creating and revoking contract instances 
Once we have created a contract type in the above form, the creation and revocation of 

contract instances at runtime is straightforward. The following code would be invoked 

by an Organiser to create then delete a contract of type FTContract: 

//create a contract between f1 and tm1 
FTContract ft1 = new FTContract(f1, tm1); 
//create a contract between f1 and tm2 
FTContract ft2 = new FTContract(f1, tm2); 
//revoke the contract between f1 and tm1 
ft1.delete(); //... 

Listing 8-9: Creating and revoking a contract 
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8.3.4. Limitation of using association aspects 
A limitation in the current implementation of the association-aspect compiler (Sakurai, 

Masuhara, Ubayashi et al., 2004) has become apparent during implementation. 

Different pointcuts within the same aspect generalisation hierarchy (such those in 

Figure 8-5) cannot match the same join point. This limitation prevents the 

specialisation of contract clauses using pointcuts: in other words, a functional contract 

cannot add extra advice to that which is already defined in the performative contract by 

means of defining its own pointcuts. Instead the advice in performative contract must 

invoke abstract methods that are over-ridden in the functional contract.  

8.4. Self-managed composites and organisers  
As describe in Chapter 7, self-managed composites are role-players that are themselves 

composed of roles. Figure 8-8 below is an implementation view of the concepts 

presented in Figure 7-1.   

 
Figure 8-8: Composites, Organisers and associated classes 

A composite has lists of its roles, players and contracts. These lists are maintained by 

the composite’s organiser as it reconfigures the composite’s structure.  

 As discussed in Chapter 7 (Figure 7-5), a composite has two interfaces: a 

functional interface over which operational process interactions flow, and a 

management interface of the non-functional requirements and performance data flows. 
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As a composite performs no domain function by itself, any functional messages must 

be delegated to a role. This delegation is implemented using a MessageRoleTable. The 

details of the MessageRoleTable are the same as in the FnRole as described in Section 

8.2.2, and are not repeated here. A composite can be viewed as an inside-out role (or 

vice-versa). Whereas a role MessageRoleTable delegates outgoing messages from its 

player to externally contracted roles, a composite delegates incoming messages to its 

internal roles. As a composite is a role player, all outgoing messages are passed to the 

role it plays. 

 The management interface of a composite is the same as the external interface of 

its composite organiser role. (As the relationship between an organiser and its 

composite is always one-to-one, these concepts could be implemented as the one class.) 

In ROAD’s current state of implementation, this interface is entirely domain-specific. 

A potential area of future work would be to define a generic management interface over 

which NFRs of various types could flow (similar to that proposed for the management 

of Web services (OASIS, 2005)). 

 As shown in Figure 8-8 above, organiser roles contain the methods for 

restructuring the composite. These methods such as createRole(), 

createContract() etc., maintain the composite’s representation of itself up-to-

date (in particular, the contracts, player bindings, and MessageRoleTables in its 

composites and roles). Every organiser role has a mutual reference to an organiser 

player which implements the IOrganiserPlayer interface. This interface defines a single 

abstract method mitigate(), which is called when any underperformance of the 

composite’s contract is detected. This method is implemented in the concrete domain-

specific Organiser Player (WidgetDeptOrgPlayer in Figure 8-8). As such, the ROAD 

framework does not specify the mitigation logic but a domain-specific version of a 

decision making process such as that illustrated in Figure 7-4 would be implemented.  

8.5. State of framework implementation and further work 
The current “proof-of-concept” implementation of the framework provides a set of 

abstract classes that enables the creation of adaptive organisational structures that can 

dynamically respond to changes in both non-functional requirements, and to changes in 

the performance of the players. The current framework supports both synchronous and 

asynchronous transactions in a ‘push’ mode of organisation. The ROAD concepts 

described in Part II of this thesis describe a broad vision of adaptive software, and 

further work is needed to fully develop the framework. Below is a list, in no particular 

order, of potential further developments of the framework. 
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• Mechanisms for the aggregation of non-functional requirements from contracts 

into role ‘position descriptions’. Organiser players (which, being domain-

specific, are outside the scope of the ROAD framework) could then be developed 

to use these descriptions to inform appropriate player discovery, and to negotiate 

appropriate external SLAs with external players. 

• Support for the protocol and general clauses described conceptually in Chapter 6 

have not yet been implemented in the framework. Protocol clauses require the 

development of state machines in the contracts that can represent and track 

sequences of transactions (Jin and Han, 2005). 

• Transaction state machines that can handle timeouts and retries are yet to be 

developed. 

• It may be useful to develop support for deferred-synchronous transactions. 

• Pull-modes of process control are not yet supported.  

• All communication between organisers is currently domain-specific. It may be 

worth developing and supporting a generic management language in the 

framework. This language could express concepts similar to those proposed in 

the Management-of-Web-Services (WSDM-MoWS) standard (OASIS, 2005).   

• Additional types of role-player adaptor could be developed. Currently the 

framework only supports players developed in standard Java, or as Web services 

with a WSDL interface. A truly heterogeneous framework would support a wide 

range of technology such as RPC, CORBA and possibly agent communication 

languages such as FIPA-ACL. 

• The version of association-aspects used to implement contracts in the framework 

only supports the compile-time weaving of the contract term pointcuts into the 

functional code. The limitation of compile-time weaving is that, while new 

contract instances can be added to an application at runtime, new contract types 

cannot be created on the fly. This prevents runtime functional (as opposed to 

non-functional) recomposition within a composite. However, as composites are 

players, new composites with different internal functional configurations can 

always be swapped at runtime. Recent developments, such as load-time weaving, 

support more dynamic deployment of aspects and could be used to dynamically 

create new types of contract. 

• As discussed in Chapter 5, the maintenance of domain state during the player 

transition and reconfiguration is an outstanding issue. This needs to be addressed 

on both conceptual and implementation levels. 
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• Also discussed in Chapter 5, the semantics of the role-player interface will also 

vary depending on the degree of autonomy assigned to the role by the 

organisation (and the capability of the player). In the current implementation of 

ROAD, we have only implemented players with ‘no autonomy’ (as shown in 

Figure 5-5), and leave the implementation of other types of player to future work. 

• A text-based declarative description (e.g. in XML) of contracts and composites 

would enable the dynamic creation of classes of these types. Such descriptions 

would be integral to the development of a ROADmaker tool, as we will discuss 

in the next section. 

 
Beyond the above issues concerning further generic framework development, there are 

issues that need to be addressed in a domain-specific way. For example, the greater the 

uncertainty of the environment of the adaptive system, the greater will be the capability 

required of the organiser player(s). Although these domain-specific players are not 

strictly part of the framework, they will need to be developed in parallel with the 

framework proper, if the full potential of adaptive ROAD organisations is to be 

realised. 

8.6. Towards tool support for developing organisational 
structures 

Adding adaptive behaviour to an application increases its complexity and complicates 

the programmer’s task. In its current state of development, the ROAD framework 

provides a set of abstract classes that can be extended by the application developer to 

create adaptive organisational structures (as in Figure 8-2 above). While the framework 

facilitates reuse, and hides much of the complexity of the adaptive mechanisms, to be a 

practical proposition software developers will need tool support – a ‘ROADmaker’ – to 

handle the added complexity.  

 Roles, contracts and composites provide an articulated10 organisational structure 

over which functional messages flow between players. As discussed in Section 8.2.1 of 

this chapter, there is a dependency between the interfaces of players, roles and the 

contracts in a role structure. The aggregation of contract terms that bind the role to 

other roles, defines the organisation-side interfaces of the role, and those interfaces 

need to be re-expressed as an interface between the role and its player. The 

compatibility between all these interfaces must be maintained.  

                                                 
10 A structure with ‘joints’ in it. These joints provide degrees of indirection which then have to be 
managed.  
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 In conventional object-oriented or component programming, the required and 

provided interfaces between two communicating components must match. If 

component A has an interface X that requires certain methods be implemented in B and 

provides certain method implementations that B expects, then component B needs a 

complementary interface X’ as shown in Figure 8-9 below. 

 
Figure 8-9: Interface dependencies between two communicating components / objects 

 Likewise in ROAD, when Player A communicates with Player B over the role 

structure, there still must be a basic compatibility of interfaces between the players, 

even if there is some transformation of the syntax or protocols of the communication. 

Figure 8-10 below shows the interdependencies between interfaces of roles and their 

players in a simple binary relationship, ignoring any alteration to the format of 

messages that may occur within the roles or their adaptors (see Section 8.2.4). If a 

player is a self-managed composite, such as Player B, then there must also be 

compatibility between the external interface of the composite X’ and the interfaces of 

the internal roles to which the composite delegates messages (Roles D and E in the 

Figure, such that X’ =  Σ(x’1, x’2)). 

 
Figure 8-10: Interface interdependencies between roles, players and contracts 

 It follows that creating such a role structure involves a lot of redundant 

information in the expression of the interfaces. If the interfaces of the roles and players, 

as well as the contract terms, are all coded separately, then the application 

programming task becomes complex and possibly prone to error. To make the ROAD 

approach practical from a software development perspective, tool support will be 

needed to ensure consistency, and to reduce the amount of redundant coding needed 

(the interfaces should only need to be written once). A preliminary design for a 

ROADmaker Eclipse plugin has been developed that presents a graphical 

representation of the composite under-development. This tool would allow the 
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programmer to create a composite from pre-existing interface definitions of objects / 

components / services. Alternatively, the programmer may want to design an 

organisation from scratch and generate code stubs / interface definitions for the players. 

While the development of such a tool is beyond the scope of this thesis, the nature of 

the dependencies in a ROAD role structure suggests a broad approach that could be 

taken in the development of such a tool. This approach involves dividing the domain-

specific constructs that extend the ROAD framework into two categories. 

 The first category covers constructs that define the role structure. These structural 

constructs include roles (functional and organiser), contracts, adaptors and composites. 

At the programmatic level, these constructs can all be viewed as entities that define or 

re-express interfaces. A declarative programming approach is appropriate for defining 

such role structure constructs. This is because they do not, in themselves, define any 

procedure (or more precisely, their procedures and data structures are generic and thus 

derived from the framework). A data model of these structural constructs and their 

interdependencies could be developed, and then used as a schema for a programming 

construct database that is manipulated by the tool. The declarative elements of this 

model are as follows: 

• Concrete Contracts consist of contract terms that can be declaratively defined. 

This is already the case in the current ROAD implementation, in the sense that 

terms are fully described by parameter values passed to a term constructor.  

These values could be expressed, say, in an XML document. The construction of 

the contract instance itself merely requires a declaration of references to its 

parties (the functional role instances).  

• Functional Roles can be derived from the contract terms. All domain specific 

information in a role is either contained in its dynamically updatable 

RoleMessageTable (updated by the Organiser), or declaratively defined (e.g. its 

name). All role functionality is either inherited (e.g. message queuing), or 

provided by external entities (e.g. adaptors and allocators). Roles, therefore, 

should be able to be automatically generated. 

• Composites perform a mirror routing function to the functional role (Figure 7-2). 

As with roles, this is achieved using a dynamically updatable RoleMessageTable. 

All the data structures in a composite are generic11 and inherited from the 

framework. Maintenance of these structures is performed by the organiser. No 

non-declarative information is therefore needed to create a composite.   

                                                 
11 This is the case in the current implementation. However, as discussed in Chapter 7.2, an alternative 
approach would be to store domain state in the composite. 
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• Role-player adaptors are dependant on the technologies used to implement the 

role and player that inter-connect. As such, they can be automatically generated, 

perhaps subject to some manual intervention needed to resolve mismatches at the 

protocol or syntax level. 

• Domain-specific organiser roles inherit all their reconfiguration functionality 

from the framework. They also define methods to make contracts of given types. 

These methods are identical, other than their type information, and thus could be 

generated automatically using reflective mechanisms provided by Java, if we 

know the types to be contracted. 

The second category of constructs includes those that “do the work”. These are: the 

functional players that perform the domain process; the organiser players that decide 

what reconfiguration and regulation is necessary; the allocators that decide on work 

allocation to roles of the same type; and the utility functions that calculate the 

performance of the role-players. These constructs need a non-declarative style of 

programming. 

8.7. Summary 
The ROAD Framework described in this chapter provides a set of abstract classes that 

the application developer can extend to create an ontogenically adaptive application. 

These classes hide much of the complexity of the adaptive mechanisms that allow the 

application to cope with changing requirements and with changing environments. A 

prototype implementation has been implemented in Java with an extension to AspectJ 

called ‘association aspects’. In ROAD, instances of these aspects are used to implement 

contracts that are the connectors in the organisational structure, that control interactions 

and measure performance over that structure. Using these aspects, an abstract hierarchy 

of contract types can be created. This allows the definition of reusable abstract 

performative contracts that can define common patterns of interactions between role 

types. The implementation of role and composite abstract classes is also described. 

Like contracts, these classes provide generic functionality needed by concrete roles and 

composites, such as message routing and queuing. 

 The current implementation of the ROAD Framework supports both synchronous 

and asynchronous interaction in a ‘push’ mode of organisation. There is a number of 

extensions that could be made to the current implementation. In particular, a graphical 

programming tool could be developed to assist the application developer declaratively 

create organisational structure and check their consistency. The next chapter (Chapter 
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9) describes an application built on this framework and shows its adaptive capability. 

The expressiveness and efficiency of the framework are discussed in Chapter 11. 

 
 
 



 

 

9  
 
A Test Application 

This chapter describes the implementation of a test application based on the ROAD 

framework we described in the previous chapter. The application1 demonstrates the 

adaptive behaviour that the ROAD framework facilitates.  The test application is based 

on our running example of a Widget Making department. The application demonstrates 

the following capabilities of the ROAD framework. 

• Role creation 

• Contract creation and deletion 

• Adding terms to contracts 

• Control of unauthorised communication 

• Performance measurement 

• Player selection based on performance 

• Work allocation 

• Binding roles to heterogeneous players 

In order to demonstrate cause and effect in the test application, we have constructed the 

composite ‘from the outside’ by using a test harness. This allows us to simply show the 

application’s output relative to its input. In production code the composite would create 

itself (create its roles and contracts) based on some declarative description of its 

structure.  

 This rest of this chapter is structured as follows. The first section provides an 

overview of the classes used in the test harness and application. Section 9.2 shows how 

                                                 
1 This chapter is based on the technical report by Pham, Colman and Han (Pham, Colman and Han, 2005) 
“The Implementation of Message Synchronisation, Queuing and Allocation in the ROAD Framework”. 
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the composite is created using roles, players and contracts, and how the framework 

prevents unauthorised communication. Section 9.3 shows how the organiser of the 

Widget Department attempts to mitigate underperformance by reconfiguring the 

composite. Section 9.4 then shows how a ROAD application can work with 

heterogeneous players – in this case Java objects and Web services. 

9.1. Overview of the test application 
As shown in Figure 9-1 below, the test harness uses a package of domain specific 

organisational classes (Widget organisation package) based on the ROAD framework, 

to create an instance of a WidgetDepartment composite that plays a WidgetMaker role. The 

WidgetMaker role receives widget orders from the ProductionManager whose player is 

driven by the user input via the test harness. Foreman and ThingyMaker roles are added to 

the WidgetDepartment composite, along with players who can play different roles (i.e. 

implement the appropriate interface). These players have different performance 

characteristics, which are simulated by putting various delays in their methods that 

process functional requests. 

 
Figure 9-1: Test harness creates initial configuration based on Widget Organisation 

Package and simulates functional load via Production Manager 

 The ability of ROAD to intercept and prevent unauthorised interactions is then 

demonstrated by attempting to invoke methods in the WidgetMaker and ThingyMaker, 
prior to creating the appropriate contracts. The appropriate contracts are then created 

between the ProductionManager and the WidgetDepartment, and between Foreman and the 

ThingyMaker, respectively. Once the composite is properly constructed, an order to make 

widgets is invoked. The output of the program then shows how the 

                                                                                                                                   
Linh Duy Pham was primarily responsible for the writing of the original report and the associated test 
application code.  
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WidgetDepartmentOrganiser reconfigures the composite as it attempts to meet the terms 

of its contract. The subsequent sections discuss the test harness’s input, and the 

subsequent output in more detail. Figure 9-2 below shows the main classes from the 

Widget Organisation package that are used in the test harness. 

 

 
Figure 9-2: Overview of the main classes of the application used by the test harness 

9.2. Composite construction and controlling 
communication 

The following discussion refers to code from the test harness and to the subsequent 

output as found in Appendix A. References to line numbers from the test harness code 

will be prefixed with an “i” (e.g. i21), while references to output line are referenced 

with an “o” (e.g. o89). 

9.2.1. Creating the composite, roles and players 
The test harness script begins (i25 to i47 as shown in Listing 9-1) by creating instances 

of roles, players, a composite and organiser from the classes defined in the Widget 

Organisation package. SkillfulEmployee objects are players that can be assigned to both 
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Foreman role and ThingyMaker role. Players of type LazyEmployee can only be assigned 

to ThingyMaker role. Inside the WidgetDepComposite object, there are three ThingyMaker 
players: badThingyMakerPlayer (of type LazyEmployee), and a foremanPlayer, 
goodThingyMakerPlayer (of type SkillfulEmployee).  

 
25  ProductionManager pm = new ProductionManager("Production Manager"); 

26  WidgetMaker wm = new WidgetMaker("Widget Maker"); 

27 

28  //player for ProductionManager 

29  Manager manager = new Manager("Manager"); 

30 

31  // Organiser setup 

32  WidgetDepOrganiserPlayer orgPlayer = new WidgetDepOrganiserPlayer(); 

33  Organiser org = new WidgetDepOrganiser(new WidgetDepRoleFactory()); 

34  org.setPlayer(orgPlayer); 

35 

36  // Player for WidgetMaker --> create the WidgetDepComposite 

37  Composite widgetDepComposite = new WidgetDepComposite(); 

38  org.setComposite(widgetDepComposite); 

39 

40  //create ThingyMaker and Foreman 

41  ThingyMaker t = new ThingyMaker("Thingy Maker"); 

42  Foreman f = new Foreman("Foreman"); 

43 

44  //create other players 

45  SkillfulEmployee foremanPlayer = new SkillfulEmployee("Foreman/Thingy Player"); 

46  SkillfulEmployee goodThingyMakerPlayer = new SkillfulEmployee("Skillful ThingyMaker"); 

47  LazyEmployee badThingyMakerPlayer = new LazyEmployee("Lazy Thingy Maker"); 

 

Listing 9-1: Creating the entities for the test application 

The entities created are shown in Figure 9-3 below. 

9.2.2. Adding roles to composite and binding players 
Once the entities have been created, the roles and players are added to the composite 

(i54 to i80). Initially, one Foreman role, and one ThingyMaker role are added. 

foremanPlayer (of type SkillfulEmployee) is then bound to Foreman f, badThingyMakerPlayer 
(of type LazyEmployee) is bound to ThingyMaker t. The initial players of the roles can be 

changed later during execution time if the players do not meet the performance 

requirements. The time taken to make a thingy is arbitrarily chosen and it is 

implemented by Thread.sleep() method. A SkillfulEmployee object produces a thingy in 20 

ms. Whereas a LazyEmployee object produces a thingy in 10 ms, however after each 

thingy is made, its performance delay is increased by 20 ms (i.e. 30 ms then 50 ms, and 

so on). The cap performance delay is 100 ms, after which it remains unchanged. Listing 



Chapter 9   A Test Application 167 

 

9-2 below shows the lines from the test harness used to add roles and players to the 

composite and binding the players to the roles.  

 
54  // add Roles and Players to composite 

55  widgetDepComposite.addRole(f); 

56  widgetDepComposite.addRole(t); 

58  widgetDepComposite.addPlayer(foremanPlayer); 

59  widgetDepComposite.addPlayer(goodThingyMakerPlayer); 

60  widgetDepComposite.addPlayer(badThingyMakerPlayer); 

61  // Setup Initial Players 

62  try 

63  { 

65    pm.setPlayer(manager);    //ProductionManager 

67   wm.setPlayer(widgetDepComposite);  //WidgetMaker 

70   f.setPlayer(foremanPlayer);   //Foreman and ThingyMaker 

73   t.setPlayer(badThingyMakerPlayer); 

74  } 

Listing 9-2: Adding entities to composite and binding players to them 

In this case the players have been added manually to the composite as the Widget 

Department Organiser player has no player discovery capability. Figure 9-3 below 

shows the initial configuration of the WidgetDepComposite and the composite’s 

relationship. At this stage (line i80) the contracts between the functional roles have not 

yet been created. To simplify the code the ProductionManager and WidgetMaker have 

been created in the context of the test harness rather than created by another composite. 

  

 
Figure 9-3: Initial configuration WidgetDepComposite Instance 
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9.2.3. Preventing unauthorised communication 
The next section of the test harness demonstrates how non-contracted communication is 

prevented. As the contract between ProductionManager and WidgetMaker has not been 

created yet, the framework will prevent the invalid CCA between two uncontracted 

roles. The order of widgets is placed by calling the method do_placeOrderWidgets() of 

ProductionManager (i82 to i94). The method prompts the user to enter a number. After 

taking the input of the number of widgets required from the user, the 

ProductionManager sends request to WidgetMaker. The invalid CCA between 

uncontracted ProductionManager and WidgetMaker is prevented (o13). 

 Similarly, when the Foreman attempts to send messages to ThingyMaker for thingies 

to be made, these messages are blocked since, at this stage (i107), the Foreman and 

ThingyMaker are uncontracted roles. Listing 9-3 below (o26 to o28) shows the status 

messages generated by the performative contract.  

 
23  ---- Before contract between Foreman and ThingyMaker is created ---- 

24  TEST: Should have error non contracted between Foreman and ThingyMaker 

25  To user: Enter number of widgets required: 15 

26  ---> before a1 do AtoB : call(void widgets.WidgetMaker.do_makeWidget(int)) – Calculate Start time. 

27  ---> after a0 error: call(void widgets.WidgetMaker.do_makeWidget(int)) 

28  X--X CCA call from uncontracted functional role: call(void widgets.ThingyMaker.do_makeThingy()) 

Listing 9-3: Output showing unauthorised call being prevented 

9.2.4. Creating contracts 
The contract ProManagerWidgetMakerContract is created between ProductionManager and 

WidgetMaker (i99).  

   ProManagerWidgetMakerContract contract = new ProManagerWidgetMakerContract(pm, 
wm); 

Likewise, a contract between the Foreman and the ThingyMaker is created (i117 reflected 

o31 to o35) by calling the method  

   org.createContract(f, t); 

The organiser determines the appropriate contract type based on the type of the roles 

passed as parameters. In this case, the terms of the contracts have been hard-coded in to 

the contract. A functionally valid structure has now been created. When an order for 

widgets is made pm.do_placeOrderWidgets(); (i125), the functional messages can now 

flow through the organisational structure.   
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9.3. Adaptive behaviour  
The input from the test harness ends once a widget order has been invoked on the 

functionally viable structure. Even though the structure is functionally valid, it is not 

necessarily viable in terms of the non-functional requirements expressed in the various 

contracts. The rest of the output (o38 to o281) shows how the composite copes with the 

changing performance of its ThingyMaker players as the order of 15 widgets is 

processed. As, in our simplified example, a widget is made of only one thingy we only 

show thingy in the output. The requests from Foreman to ThingyMaker to make thingies 

are asynchronous requests. For the order of 15 widgets from the ProductionManager 

player, the Foreman will place 15 requests to the ThingyMaker with each request being 

for 1 thingy. 

 The composite’s organiser (orgPlayer : WidgetDepOrganiserPlayer) uses a basic strategy 

when faced with underperformance in a contract. Firstly, it looks to find the player with 

the best performance from those it has available. In the case of the test application the 

organiser has no discovery mechanism for players – it only has available those that 

have been previously made known to it. The organiser then compares the best player’s 

claimed performance with the existing player’s actual performance. If the new player’s 

performance is better it will use it. If there is no better player, the organiser will then 

create another role and attach another player to it so that there are now multiple role-

players performing the function. (In more sophisticated organiser-players more 

advanced strategies could, of course, be used.) 

 There are two threads running in the background, one is the main thread, the other 

one is the thread inside the ThingyMaker role processing the asynchronous messages. 

The main thread pushes a message into ThingyMaker role’s message queue (o47). The 

message processing thread then pops the message out and processes it. The first thingy 

is made by badThingyMakerPlayer in 10 ms Line (o50). The elapsed time is slightly more 

than 10 ms (o53 shows 15 ms) because of the delay while the message is inside the 

queue. The performance of the badThingyMakerPlayer progressively degrades (o64 to 

o81) until it reaches 94 ms and it is in breach of the contract requirements. The 

organiser then replaces the badThingyMakerPlayer by a better player (o89). In this case, 

the better player is either foremanPlayer or goodThingyMakerPlayer as they both have the 

performance of 20 ms. The choice is random and foremanPlayer is chosen. 

 The configuration of the WidgetDepComposite instance is thus changed 

dynamically. The foremanPlayer is now assigned to both Foreman and ThingyMaker roles. 



170 PART III   ROAD Framework and Discussion 

 

 
Figure 9-4: The Configuration of WidgetDepComposite Is Changed Dynamically.  

The Foreman player takes on the ThingyMaker role. 

The next thingy is nominally made in 20ms by this newly assigned ThingyMaker player 

(o98), although in this case queuing overhead results in a measurement performance of 

93 ms (o101). Since we have just changed the player, the average performance of this 

new player is calculated based only on the new player’s performance. This performance 

once again is in breach of the contract requirements. However, there is no better player. 

The organiser detects that the composite has unused resources; in this case, 

goodThingyMakerPlayer and badThingyMakerPlayer. To minimise the change in the 

configuration, it tries to utilise one player at the time. To utilise a ThingyMaker player, it 

has to create a new ThingyMaker role, and create a contract between this new 

ThingyMaker role and the existing Foreman. It then binds the best available player (in this 

case, goodThingyMakerPlayer with a performance of 20 ms) to the newly created 

ThingyMaker role. 

 The new configuration is now shown in Figure 9-5. 

 
Figure 9-5: Re-configuration of the role structure – another ThingyMaker role is created 
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processing the messages. The work allocator provided by the framework determines 

which role receives the message (in this case a round-robin allocation scheme has been 

designated in the Foreman’s MessageRoleTable when the FTContract is created). The 

output at this point is quite hard to follow because these threads are executing 

independently. 

 As the goodThingyMakerPlayer participates in creating thingies (o153) the elapsed 

time and average are calculated separately for each of the players. At the end of the 

output, the program does not terminate, since the main thread finishes but the other two 

threads in ThingyMaker instances are still running and waiting for new messages in their 

queues. 

9.4. Heterogeneous players 
The ability of the ROAD framework to cope with heterogeneous players is tested using 

a separate test harness. This test harness is substantially the same as the one in 

Appendix A except in this case a wsThingyPlayer of type ThingyPlayerWebServiceProxy is 

employed. A Web service to make thingies is created and run on a server. The initial 

composite configuration is shown in Figure 9-6 below.  

 

 
Figure 9-6: Using a Web service player 

 In the case of a Web service player, the organiser has two bindings to control: the 

binding between the role and the player (in this case a proxy for the Web service), as 

well as the binding between the proxy and the Web service itself2. Using the Apache 

Axis platform to provide the implementation of SOAP (Apache Web Services Project, 

2006), the proxy-service binding merely involves setting the endpoint URL of the 

service as follows:  

                                                 
2 This is slightly different approach to that described in Section 5.5 as there is no adaptor attached to the 
role. Rather the proxy is the player and there is an extra binding. 
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   String endPoint = "http://[some 
url:port]/axis/ThingyMakerPlayerWS.jws"; 
   wsThingyPlayer.bindToNewEndPointService( new URL(endPoint) ); 

In terms of adaptive behaviour the Web service proxy wsThingyPlayer appears like any 

other player. Performance of the service is measured in exactly the same way, and the 

same mitigation strategies can be used. The only difference with the standard case is 

that at runtime, the organiser has an additional level of indirection available to it by 

controlling the Web service end point.   

9.5. Summary 
The above test application demonstrates the basic adaptive behaviour of the ROAD 

framework, including the creation of new roles and contracts, as well as the selection of 

players. In addition the test application shows how unauthorised communication is 

controlled and how ROAD handles heterogeneous players. The adaptive behaviour 

demonstrated in the test is in response to changes in the performance of players, rather 

than changes in the requirements set in the contracts. However, as the adaptive 

behaviour is triggered in response to the difference between requirement and 

performance, perturbation caused by changing requirements is substantially similar to 

the case tested here. The above test example also focuses on the adaptive behaviour 

within a single composite as it plays a role in an enclosing composite (in this case 

simulated by the test harness). The next chapter presents a design case study that shows 

how a ROAD application would be created that involves multiple levels of composites. 

The performance of the ROAD framework is then discussed in Chapter 11. 

 

 



 

 

10  
 
A Design Case Study  
in Service Oriented Computing  
 

This chapter demonstrates the application of ROAD to a domain that contrasts with our 

running example, the Widget department. This case study shows how a Book Broking 

service can be designed to assist a book purchaser (a large library) effectively acquire 

books from various book sellers via the Web services those sellers provide.    

 This case study highlights a number of different characteristics of ROAD. These 

include: 

• How ROAD can be applied to Service Oriented Computing (e.g. Web services), 

in particular the mediation between changing requirements and the changing 

provision of services. 

• The use of ROAD in an information system rather than a manufacturing control 

system. 

• Types of abstract performative contract suitable to commercial inter-

organisational contracts (as distinct from intra-organisational contracts such as 

supervisor-subordinate, peer-peer, etc.).   

• The use of contracts which govern ‘long-lived’ transactions.  

• The ability to represent ‘virtual enterprises’1 using ROAD. Transactions in these 

enterprises are not entirely ad hoc, but occur in the context of dynamic longer 

term relationships. 

                                                 
1 For example, as covered by IFIP working group 5.5  (Cooperation Infrastructure for Virtual Enterprises 
and Electronic Business - "COVE")  http://www.ifip.org/ or the Society of Collaborative Networks 
http://www.uninova.pt/~socolnet/  
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• The creation of protocol clauses from sequences of transactions. 

• The measurement of non-time based utility in the performance of a contract. A 

number of utility functions described in the case study are informational 

representations of the state of the domain (e.g. financial and physical domain) 

rather than a measurement of the time of the interaction itself. 

• The aggregation of compound utility functions to determine the over-all utility of 

a relationship. 

• The design of composites so that role abstractions in a composite are always kept 

at the one level of abstraction. In ROAD, roles are not decomposed into other 

roles within a composite; rather, roles are always played by loosely coupled 

players. It is these composite players that decompose the function into the 

(internal) roles, and these players can always be separated from the (external) 

role they play. Highly adaptive systems can thus be created, because the 

decomposition (not just the configuration) can always be changed at runtime.  

The chapter is structured as follows. The first section describes the business context of 

the case study, and defines some relevant system requirements. The second section 

presents a high-level ROAD design of the system where composites and roles are 

assigned responsibilities in fulfilling the system’s requirements. Section 10.3 

decomposes the composites identified in the high-level design into roles. Section 10.4 

specifies some of the contracts between these roles. The fifth section discusses the 

management interface for a composite in terms of the various types of utility objects 

that are passed over that interface. Section 10.6 illustrates the adaptive behaviour of the 

system, and then 10.7 discusses the case study as an example of ‘application-specific’ 

service-oriented middleware. The chapter is briefly summarised in Section 10.8.  

10.1. Context and system requirements 
A large institutional library purchases many books from many suppliers. This 

purchasing is currently the responsibility of the Acquisition Department (AD) that 

works in collaboration with other individuals/departments (Librarians, Accounts, etc.). 

The same book can often be sourced from multiple suppliers.  

 Because the library is such a large purchaser of books, its suppliers have an 

interest in providing a high level of service to the library (competitive prices, quick 

turn-around etc). Likewise the library has an interest in maintaining good working 

relationships with key suppliers. It generally tries to limit the number of suppliers in 

order to keep administrative overheads down. Ordering through a limited number of 

suppliers also enables the library to place larger orders with those suppliers and thus 
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negotiate quantity discounts. As distinct from an individual purchase transaction, the 

terms of a library-supplier relationship are more long-lived. The properties of a 

relationship between the library and a supplier often vary. These variables (we will call 

them “terms of trade”) could include: 

• payment on invoice or statement  

• time from order to delivery (average, range, deviation, maximum, ...) 

• terms of payment (prepayment, on invoice, 30 days, 60 days, ...) 

• discount on RRP, if any 

• who pays freight 

• reliability of supplier with respect to previous deliveries 

• product range supplier has available 

• duration of relationship 

• value of  trade with supplier 

• reputation of supplier (particularly if prepayment is required) 

• and so on ... 

The library has set the values of its desired outcomes of these set of variables (e.g. low 

price, payment 30 days on statement, freight free-into-store, delivery not more than 2 

weeks unless otherwise specified, and so on). The Acquisitions Department currently 

use these policies to negotiate terms of trade with individual suppliers. 

 In recent years the choice of suppliers available to the library has greatly expanded 

(e.g. the library can now order books directly from overseas). This has resulted in 

increased price competition from suppliers. Also, the ordering and payment for books 

can now be transacted on-line. To take advantage of these changed market conditions, 

the library would like to partially automate the process of search, selection and 

payment for its books. In order to obtain competitive prices, the library plans to 

develop an in-house automated broking service (“the Broker”). 

 This service will provide a Web Service interface to the library, and will purchase 

books automatically using the suppliers’ Web services interfaces2. Many book suppliers 

provide automated Web service interfaces for book search, quoting, ordering and 

payment. The protocols for these transactions and the terms of trade vary between each 

supplier, and the Broker needs to be able to work with all of them. The responsibility of 

the Broker is to source the books needed by the library with optimal terms of trade for 

                                                 
2 Some book sellers already provide Web services. For example, the XMethods site 
http://xmethods.net/ve2/index.po lists a number of book seller Web services e.g.  
http://www.abundanttech.com/webservices/bnprice/bnprice.wsdl   
http://majordojo.com/amazon_query/amazon_query.wsdl 
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the library, while maintaining strong relationships with suppliers. The Broker therefore 

has to assess the value of each transaction to the library (not just the price). It also has 

to ensure that the library and supplier have matching payment and delivery protocols. 

 In assessing the library’s optimal terms of trade, the Broker has to abide by the 

purchasing policies and preferences set by the library. These preferences often have to 

be traded-off. For example, the Broker can source books either locally or from 

overseas. While overseas books are often cheaper, delivery times are typically longer. 

Methods of payment also vary between local and overseas suppliers. Most (not all) 

local suppliers are happy to supply books on invoice as the library is a reliable payer. 

Overseas suppliers invariably want payment up front. The library therefore sets a 

purchasing policy (general terms-of-trade) that provides rules to the Broker so that it 

can trade-off these variables. For example, it instructs the Broker that it prefers to pay 

on statement or on invoice, yet it is prepared to pay upfront if the total cost saving is 

greater than 15% of the book(s) price, and the supplier has a good reputation. 

 The advantage for the Library using the Broker is that the Broker hides many of 

the details of relationships with suppliers, and automates the supplier selection process. 

Once its broking service is established, the Library hopes to be able to sell the service 

to other libraries. This would have the dual benefit of providing fee-for-service income 

to the Library, and of increasing its buying power through an increased volume of 

orders. The Library therefore requires that the Broker’s architecture be easily extensible 

so that it can cope with multiple libraries. The Library, Broker and the suppliers can be 

thought of as forming a ‘virtual enterprise’ that creates dynamic business relationships 

between its entities. 

10.2. High-level ROAD-based design  

10.2.1. Single library 
To design a role-based system that meets the requirements set out in the above 

scenario, we decompose the system into composites that play a role with respect to the 

system. These composites are themselves made up of interacting roles, all of which are 

at a similar level of abstraction, and within a single domain of control (e.g. have a 

single owner). The Library Book purchasing system can be viewed as a virtual 

enterprise that consists of three composites and a number of other players. The 

composites are the Library itself, the Acquisitions Department composite that plays the 

Acquisitions role within the library, and a Book Broker composite that supplies the 

Acquisitions Department with books.   An overview of the design is illustrated in 

Figure 10-1 below. This preliminary design does not include payment or delivery 
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mechanisms – we assume payment is somehow made and recorded at some point in the 

transaction process, and that the book is somehow delivered to the library after 

purchase. 

 
 

 
Figure 10-1: Library Book Broker Virtual Enterprise – example instantiation within a 

single library composite 

 Note that the structure of the Acquisitions Department and the Book Broker are 

both largely generic. The roles and their relationships in these composites are typical of 

purchasing and broking functions. As such, these composites could be specialised 

instances of more generic composites (e.g. the Book Broker is a special case of a 

Broker).   

 Also note that in the Broker composite each Vendor is represented by a different 

role, rather than there being a single Vendor role which is attached to different Book 

Seller players at different times3. This is because the agreed specific terms of trade and 

history of transactions need to be persistent for each Shopper-Vendor relationship, i.e. 

contract4. As shown in Figure 10-1, the organiser of the Book Broker (BBOrg) receives 

preferences and constraints (general terms-of-trade) from the organiser of the 

                                                 
3 This is not just an implementation issue, because if there is only one role for which players are selected 
then conceptually selection is the responsibility of the Broker Organiser role. Otherwise choosing a 
supplier is a work allocation task that is performed by the Shopper. 
4 In implementing these contracts it would be sensible to store their state in a common database so that the 
Broker organiser BBOrg can run queries across contracts. As transactions pass through the contract, it calls 
update queries on the database 
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Acquisitions Department (ADOrg). BBOrg interprets these general terms-of-trade into 

specific terms-of-trade appropriate to each vendor, and stores them in the Shopper-

Vendor contracts.  The roles within these composites are discussed in Section 10.3. 

10.2.2. Multiple libraries 
Extending the design of the Broker to handle multiple library clients is straightforward, 

as shown in Figure 10-2 below. We will call this composite a Broking Service. A 

Broking Service consists of a number of Client-Broker relationships, there being one 

broker for each client. The contracts between a Client and Broker store a copy of the 

general terms-of-trade for that Client. For each library that uses the Broking Service, a 

separate Client role is created that acts as proxy for that library. All functional 

interactions with a library pass through its Client role. Each Broker role instance is 

played by a BookBroker composite (as in Figure 10-1 above). The organiser of the 

Broking Service composite passes the general terms of trade for a particular library 

client of the organiser of the contracted BookBroker composite (not shown in the 

figure). That BookBroker organiser then creates the specific terms-of-trade between 

Shopper and Vendor roles inside its composite, storing these requirements in the 

appropriate Shopper-Vendor contract. Note that this extension of the design can be 

achieved without making any changes to the previously defined Library and 

BookBroker composites. 

 
Figure 10-2: Independent Broking Service instance with multiple library clients 
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and lib2 that play Client roles c1 and c2 respectively. As both the Library and the 

Broking Service are ROAD composites, they both present a management interface over 

which changing NFRs and performance data flow between their respective organisers. 

In this case, the organisers within the libraries’ acquisition departments send the 

Broking Service NFRs relating to their general terms-of-trade. The organiser of the 

Broking Service (BSOrg) stores these NFRs in the respective Client-Broker contracts, 

and transmits them to the organiser (a BBOrg) of the appropriate Book Broking 

composite (not shown). We will discuss this management interface in more detail in 

Section 10.5. 

 The second type of library (Library 3) is not a ROAD composite. It has a 

functionally compatible Web service interface through which it interacts with the 

Broking Service, but it has no management interface or organiser. Although Library 3 

can still order books, there is therefore no mechanism for dynamically changing the 

general terms-of-trade (NFRs) between Library 3 (playing the c3 Client role) and its 

Broker,. These NFRs would need to set statically in advance (or through some form of 

supervisory control via BSOrg). As a further enhancement of its services, the Broking 

Service could offer a public Web service interface for individual (non-institutional) 

customers who do not require a long term relationship with book suppliers. The 

organiser would dynamically create ad hoc client and broker roles, and a broker player. 

The contracts in the composites would have fixed terms-of-trade (e.g. pay up front). 

 Note that in the above design, a composite Library and a Broking Service both 

play a role in each other’s organisation, as indicated in Figure 10-2 by the plays 

relationship arrows between the composites. The Library’s AD Supplier role is played 

by a Broking Service, and the Book Service’s Client role is played by a Library. The 

implication of this is that all functional messages between the composites pass through 

these respective roles. Such a structure would suit composites in different 

organisational domains (e.g. with different owners), because each composite has an 

internal role that is a proxy for the other composite. This will assist the decoupling of 

the Broker service in the event of it being ‘spun-off’ as a separate business entity.  

10.3. Decomposition of composites 
The responsibilities of the AD, Book Broker and Broking Service composites with 

respect to the book purchasing virtual enterprise are defined by the roles they play, i.e. 

the Library.Acquisitions role and the AD.Supplier role. A Book Broker and a Broking 

Service are both Supplier role players, and would look functionally identical to a 

composite Library. The only difference between them is that the Broking Service can 
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handle multiple Library clients.  In this section, we will examine in more detail the 

single library composition shown in Figure 10-1, and decompose the responsibilities of 

the AD and Book Broker composites into their internal roles. 

10.3.1. Responsibilities of the Acquisitions Department 
The Library’s Acquisition Department (AD) is responsible for acquiring books on 

behalf of the Library. An AD composite models the relationships between roles 

involved in the acquisition process: Orderer; the Receiver; and the Supplier. In the 

instantiation of the system shown Figure 10-1 the Orderer and Receiver roles are 

played by library employees (using an appropriate UI) and the Supplier role is played 

by a Book Broker (or Broking Service) composite. 

Orderer role position description 
• Receive requests for books from the Library. (These requests are delegated from 

the composite’s MessageRoleTable.) 

• Prioritise orders 

• Request quote from Supplier 

• Check sufficient funds available  

• Create order (with order number) and forward orders to the Supplier (played by 

the Broker) 

• Follow protocol for the purchase of books as defined in its contract 

• Request and receive funds from the Library. Keep budget actual balance updated. 

Supplier role position description  
• Receive requests for quotes and orders from Orderer 

• Provide quotes 

• Fill orders 

• Receive notification from the Receiver of receipt of the ordered items.  (The 

Supplier role is played by the Broker which calculates performance data (e.g. 

delivery time) of particular orders because it involves the physical delivery of 

items.)    

Receiver role position description  
• Physically check in-coming books against delivery and order documentation 

• Inform Supplier of receipt of order. 

• Notify Supplier of any discrepancies between what was ordered and what was 

received. 
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AD Organiser role (ADOrg) position description  
• Sets the general terms of trade (NFRs) in the Orderer-Supplier contract for 

purchasing books from the polices set by the library. 

• Notifies the organiser of the Broker (BBOrg) of those terms. These NFRs can 

either be firm constraints or preferences. 

• Binds players to roles (in the case of the AD composite these relationships would 

be relatively stable). 

• Handles exception passed to it from the BBOrg, e.g. unable to find supplier of 

book given constraints. 

10.3.2. Responsibilities of the Book Broker 
Externally the BookBroker composite needs to meet the requirements of the Supplier 

role in the AD composite.  Internally the Broker is decomposed into Shopper, Vendor 

and BookFinder roles. The Shopper role receives the AD’s book orders by delegation 

from the Broker composite. The Vendor roles are proxies for book supplier Web 

services, and the BookFinder role is proxy for a book search service (played by the 

BooksInPrint Web service). 

Shopper role position description 
• Send queries to the BookFinder role to find which suppliers have copies of the 

book(s) that match the library’s order. 

• Find which potential suppliers have existing contracts (agreed terms-of-trade) 

with the library.  

• If none of the suppliers are currently contracted with the library client, inform the 

organiser so a new contract can be negotiated 

• Send requests for quotes to the contracted Vendors who stock the book 

• Evaluate quotes to find the most favourable. This is a special case of the work 

allocation function discussed in Chapter 8.3.2. 

• If there is an acceptable offer order the book(s) according to the protocol defined 

in the contract. 

• Send notification of the order (Order No, Price) to the composite’s role allocation 

table (this is then passed to the Library via its AD.Supplier role).  

• If no acceptable offers are forthcoming, inform the composite. 

Vendor role position description   
The Vendor role is a proxy for an external book supplier. Book suppliers use various 

protocols but all have the following responsibilities: 
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• Provide a response to following queries 

o whether a book is in stock and how many copies are available 

o quote prices on an order including transport charges 

• Fill a book order based on a quote and arrange delivery 

• If required the supplier may also be required to invoice/provide statements to the 

client directly  

• Accept payment 

BookFinder role position description 
• Accept queries about the availability of book(s) 

• Return name of book vendors who have stock of those books 

Broker Organiser role (BBOrg) position description 
We assume that the BBOrg player has a discovery mechanism for Web service book 

suppliers, and that these services provide adequate service descriptions (including use-

protocols). If appropriate the BBOrg player would also negotiate specific terms of trade 

with external book suppliers consistent with the Library’s general terms-of-trade.    

• Create new Vendor roles, and Shopper-Vendor contracts. 

• Get general terms-of-trade preferences from the organiser of the enclosing 

composite (ADOrg or BSOrg) 

• Set the terms of the contracts between the Shopper and specific Vendors based on 

specific client-supplier relationship information (e.g. required method of 

payment). 

• Revise contracts if general terms-of-trade are revised.  

10.4. Contracts 
As pointed out in Chapter 8, role definitions are aggregations of the contract terms that 

bind them, and players must be compatible with these role definitions. This section will 

define the contracts in the AD and Broker composites. We will firstly define some 

abstract performative contracts that define the interaction patterns, and then specify the 

concrete contracts. 

10.4.1. Abstract performative contracts 
Our design identifies two types of abstract performative contract: a Buyer-Seller 

contract and an Information Peer-Peer. For example, the interaction in a Client-Broker 

concrete contract can be generalised as a BuyerSeller performative contract as shown in 

Figure 10-3 below. 
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Figure 10-3: The Client-Broker relationship generalised as a Buyer-Seller contract 

All concrete contracts in the design can be inherited from the Buyer-Seller and 

Information Peer-Peer abstract contracts as shown in the table below. 

Table 10-1: Inheritance from common Performative Contracts 

Performative Contract Functional Contract 
Buyer-Seller Orderer-Supplier 
 Shopper-Vendor 
 Client-Broker 
Information Peer-peer Supplier-Receiver 
 Shopper-BookFinder 

 
We next define these two performative contracts in the form previously discussed in 

Chapter 6. 

Buyer-Seller Performative Contract 
The Buyer-Seller performative contract (Figure 10-4) defines the general form of 

communication between a Buyer and Seller. All transactions are asynchronous, that is, 

in the form of an initiated CCA and a matching response (e.g. GetQuote, Quote).  

Named transactions that can be initiated by the Party A (the Buyer) start with the letter 

“a” (e.g. a2), while Party B’s (the Seller) transactions start with “b”. As described in 

Chapter 6, protocol clauses are sequences of transactions. The example Buyer-Seller 

contract has a number of named protocols (p1-p6) that represent prototypical 

sequences of transactions that are permitted under the contract. These can be used to 

enforce appropriate business protocols. For example, the “pay up front” protocol p1 

consists of the transactions a2,a3,b2; i.e. (Order , OrderConfirm), (Pay-Receipt), 

(Deliver, Acknowledge). Protocols can also be formed from other protocols. For 

example, the “quoted pay up front” protocol p4 consists of transaction a1 (GetQuote, 

Quote) followed by protocol p1. A concrete contract that inherits from Buyer-Seller 

would have a subset of these protocol clauses activated; activations which, if necessary, 

changed at runtime. The final section of the contract is the ‘performance measurement 
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points’. These define the before and after points at which change of state can be 

measured to evaluate the performance of an obligated party.   

 
Performative Contract Name: Buyer-Seller 
Parties: 
 Party A: Buyer 
 Party B: Seller 
   
CCAs: 
 (shorthand CCA code in brackets) 
 GetQuote (gq), Order (o), Pay (p), Acknowledge (ack) 
 Quote (q), OrderConfirm (oc), Deliver (d), Invoice (inv) 
 
Transactions: 
 Party A initiated terms 
  a1: GetQuote-Quote 
  a2: Order-OrderConfirm  
  a3: Pay-Acknowledge 
 
 Party B initiated terms 
  b1: Invoice-Pay 
  b2: Deliver-Acknowledge 
 
Protocols:  
 (Protocols are sequences of transaction terms – all Party A initiated)  
 p1: a2, a3, b2    //pay up front 
 p2: a2, b2, a3  //pay on delivery 
 p3: a2, b2, b1  //pay on invoice 
 p4: a1, p1    //quoted pay up front 
 p5: a1, p2    //quoted pay on delivery 
 p6: a1, p3  //quoted pay on invoice 
 
Performance measurement points: 
 a1: price( ); discountRRP( ); ...   i.e. before and after a1 
 b2: daysToPay( )   i.e. before and after b2 
 a2, b2: deliveryTime( )  i.e. before a2 and after b2 
 p1: deliveryTime( )   i.e. before and after p1 

Figure 10-4: Buyer-Seller Performative Contract 

 

Information Peer-Peer Performative Contract 
An Information Peer-Peer contract shown in Figure 10-5 allows the contracted parties 

to query each other, or to provide unsolicited information. This is similar to the Peer-

Peer contract in our Widget making application, except that one peer cannot invoke a 

DO CCA in the other. Note that, as this contract defines a simple request-response 

transaction, no multi-transaction protocols are defined. Additionally, as the contract 

involves information exchange only, no performance measure points are defined 

(although it would be possible to define one for timeliness of the response). 
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  Performative Contract Name: InformationPeerPeer 
 
 Parties: 
  Party A: Peer1 
 Party B: Peer2 
 CCAs: 
 (shorthand CCA code in brackets) 
 Query (qry), Inform (inf) 
Transactions: 
 Party A initiated terms 
  a1: Query, Inform 
  a2: Inform 
 Party B initiated terms 
  b1: Query, Inform 
  b2: Inform 
Protocols:  
 NA  
Performance measurement points for utilities: 
NA 

Figure 10-5: Information Peer-Peer Performative Contract 

10.4.2. Concrete functional contracts 
This section specifies some example concrete contracts from the Book Broker 

application. A concrete contract defines the specific messages each party can send to 

the other, and associates those invocations with a CCA. As previously, the convention 

is that the CCA of the method invocation is indicated as a prefix (e.g. gq_). As pointed 

out above in section 10.4.1, the Orderer-Supplier, Shopper-Vendor and Client-Broker 

concrete contracts all inherit from the abstract Buyer-Seller contract. These concrete 

contracts all serve the same function in different composites, indeed they could be all 

implemented with the same concrete contract type, provided the respective interfaces in 

the roles (e.g. Supplier, Vendor) are the same. We will assume this is the case and will 

define a single concrete contract BookBuyer-Seller to cover all the above associations.   

 
Name: BookBuyer-Seller contract extends Buyer-Seller 
 
Orderer initiated 
 gq_GetQuote(Items) 
 o_OrderBooks(OrderNo, Items, MaxTimeToStore, QuoteID) 
 p_PayOrder(PayID, OrderNo, InvoiceNo, Amount) 
 ack_OrderReceived(OrderNo) 
 ack_OrderReceived(OrderNo, Discrepancy) 
Supplier inititated 
 q_Quote(QuoteID, Items, Price) 
 oc_OrderConfirmed(OrderNo, Price, SupplierID) 
 oc_OrderConfirmed(OrderNo, False, Reason)  //order not confirmed 
 d_DeliveryNote(DeliverID, OrderNo) 
 i_Invoice(OrderID(s), Amount) 
 ack_Receipt(InvNo, Amount) 
 ack_Receipt(OrderNo, Amount) 
 

Figure 10-6: BookBuyer-Seller Concrete Contract 
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 Recall that the terms of a contract are created dynamically, including details of the 

signature(s), the synchronisation type, and any utility function used to measure the 

performance of the term. Contract clauses that cover any protocols to be followed or 

other general clauses are also dynamically added. In our example, utility functions 

associated with BookBuyer-Seller contract terms could measure Price, DeliveryTime, 

or any of the parameters associated with the general terms-of-trade listed in Section 

10.1. Utility function classes (as ROAD is written in Java these functions have been 

implemented as classes) have methods for setting the expected value of the parameters 

(e.g. for a DeliveryTimeUtility these values might be TargetMeanDeliveryTime, 

BreachThresholdDeliveryTime, etc.). As well as storing the required performance, a 

utility object stores the actual performance based on the history of interactions between 

the contracted roles. Each utility class implements a calculateUtility( ) method that 

returns a value associated with the contract performance (e.g. InBreach, 

UnderPerforming, Performing). Protocol clause classes are also dynamically added to 

contracts. These classes maintain state machines that define acceptable sequences of 

terms (e.g. as defined in the Buyer-Seller performative contract in Figure 10-4). 

 Other concrete contracts would be similarly specified. For example the Supplier-

Receiver contract is much simpler than the Buyer-Seller performative contract. It is 

only used to create a connection and prohibit unauthorised interaction, rather than 

measure performance. As shown in Figure 10-7, the concrete contract merely associates 

particular method invocations with CCAs defined in the InformationPeerPeer 

performative contract. 

  
 Name: Supplier-Receiver contract extends InformationPeerPeer 
 
 Receiver initiated 
  inf_OrderReceived(OrderNo) 
  inf_OrderReceived(OrderNo, Discrepency) 
 Supplier initiated 
  qry_GetOrderStatus(OrderNo) 
  

Figure 10-7: Supplier-Receiver Concrete Contract 

10.5. Composite management interfaces 
A composite player has to meet the performance requirements (NFRs) that are 

contained in the contract(s) that bind the role it plays. For example, the BookBroker 

composite plays the AD.Supplier role, and as such it needs to meet the NFRs that 

obligate the AD.Supplier role. The contracts that define the AD.Supplier role are the 

Orderer-Supplier contract and the Supplier-Receiver contracts. However, only the 

Orderer-Supplier contract has NFRs defined against its terms, therefore the 
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BookBroker composite only has to fulfil the requirements associated with that contract. 

As discussed in the previous section, these NFRs are defined in the AD’s Orderer-

Supplier contract as instances of utility classes attached to the contract’s terms. Copies 

of these utility objects are passed by the organiser of the super composite (ADOrg) to 

the organiser of the player composite (BBOrg), as shown in Figure 10-8 below.  

 
  

 
Figure 10-8: Non-functional requirement and the measurement of their performance 

 Once the organiser of a composite is informed of NFRs in the form of utility 

objects, these composite-wide requirements (in our example, the general term-of-trade) 

need to be translated by the organiser into performance requirements for the utility 

objects associated with the contracts it controls (e.g. instances of the Shopper-Vendor 

Contracts). The organiser also uses this required performance information to compare 

the performance requirements of a role instance (e.g. v1) with any claimed performance 

of players that are candidates to play that role. If a role is bound by more than one 

contract, the organiser may need to aggregate NFRs into a consolidated position 

description for the role. 

 In our earlier example of a Widget Department, all utility was time-based; that is, 

performance could be measured numerically. However, not all NFRs are necessarily 

measured numerically. For example, preferences might be expressed for the type of 

protocol to be used. A NFR could consist of a list of protocols in preferential order. For 

example, the order of preference for the protocols (as defined in the Buyer-Seller 

performative contract) might be p6, p5, p4, while protocols p1, p2, p3 are unacceptable. 
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 Utility objects may also be multi-variant, in that they contain a number of 

performance variables that need to be traded-off against each other. The trade-off may 

be based on rules contained in the calculateUtility( ) method of the utility object. For 

example, the library has a requirement that it is only prepared to deal with untrusted 

parties on the basis of Protocol p6 (pay on quoted invoice). Alternatively, a multi-

variant value function (Keeney and Raiffa, 1976) could be used as the basis for 

evaluating particular trades or comparing the offers of particular vendors. Typically, 

such value functions reduce all attributes to a numeric value that allows these attributes 

to be compared. The values are then weighted to reflect their relative 

importance/preference in trading-off the attributes. The sum of the weighted values 

gives a single number that can be used to compare alternatives.  

 Table 10-2 below gives some examples of NFRs from the BookBroker. These 

include conditions for evaluating numeric and categorical variables, as well as single 

and multi-variant conditions. 

Table 10-2: Examples of the evaluation of non-functional requirements 

 Contractual Requirement Comparative Function 

Single Variable 
 - numeric Discount RRP > 5% Minimum  

(PriceA, PriceB, PriceC, ...) 

Single Variable 
 - categorical Protocol = (p6 || p5 || p4) PreferredRank(p6, p5, p4) 

Multi-variant  If Vendor.player.trusted = FALSE 
then Protocol = p6   

SomeUtilityFunctionMAX 
(Price, DeliveryTime, ...) 

10.6. Adaptive behaviour 
In this section we will describe the adaptive behaviour of the BookBroker composite. 

As described in Chapter 7, adaptive behaviour occurs within a ROAD composite and 

across composites. Adaptive behaviour within a composite involves the organiser 

following strategies for reconfiguration (creating/destroying roles, contracts and role-

player bindings), and regulation (altering the terms of contracts). Adaptive behaviour 

across composites involves the transmission of NFRs between composites as described 

in the previous section, and the transmission of performance information in the case of 

capacity planning or composite underperformance. 

 The organiser of the BookBroker composite (BBOrg) first needs to establish 

relationships between its library client and various suppliers. The organiser receives 

NFRs representing the library’s general terms-of-trade and needs to discover book 
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suppliers with whom it can potential form contracts5. For each of the suppliers that 

meet the minimum standard for terms-of-trade, the organiser creates a Vendor role, 

binds the external service to that role (i.e. creates the Web service adaptor and sets the 

end-point), and creates an instance of a BookBuyer-Seller contract between the instance 

of the Vendor role and the Shopper role. Terms appropriate to the specific relationship 

(the specific terms-of-trade) are then written into each contract. Adaptation to change in 

requirements in this scenario could be triggered by either the client or a vendor wanting 

to change the terms of trade. If the organiser can find a mutual accommodation under 

the new requirements, the terms of the contract would be rewritten; if not the contract 

and role would be destroyed (and thus end the particular relationship to the supplier).     

 Once the BookBroker composite structure is established, and the terms of the 

contracts written, the composite can respond to book orders.  One strategy the organiser 

BBOrg could employ would be to create a general utility function that ranks each of 

these vendors according to some comparative value function (as in Table 10-2) that 

weights each of the client library’s preferences (discount, reputation, reliability 

payment terms, etc.) and calculates each supplier performance with respect to those 

weighted performance measures. This value function could then be used by the player 

of the Shopper role (the Agent a1 in Figure 10-1) to decide where to place an order, 

given the list of suppliers (obtained by the external BookFinder service) who have the 

book(s). The Shopper may even break the order into a number of sub-orders, if the 

utility is greater. Once order(s) are placed and received, performance metrics (e.g. time 

to deliver, actual discount received, etc) can be updated in the appropriate Shopper-

Vendor contract and fed back into the evaluation process for subsequent orders. 

 If there is no contracted supplier that can supply the book under existing terms of 

trade, then the organiser BBOrg is informed. The organiser may have additional 

strategies (e.g. search for new suppliers and create new contracts). If the order still 

cannot be filled, the problem is escalated back to the library’s Acquisition Department 

organiser (ADOrg) who needs to decide if it wants to relax its general terms-of-trade 

for that order. 

10.7. Discussion - ROAD as application-specific 
middleware 

This case study highlights that a ROAD composite (sans services) can be viewed as 

service-oriented computing middleware (Colman, Pham, Han et al., 2006; Colman and 

                                                 
5 We assume there are external mechanisms for service discovery, reputation assessment, and negotiation 
available to the organiser using WS standards such as UDDI, WS-Coordination and WS-Agreement and 
that suppliers also support these standards 
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Han, 2005). By using a common middleware, heterogeneous applications are able to 

communicate and collaborate. Middleware technologies also hide complexity and add 

value to these interactions. For example, taking a high-level Enterprise Application 

Integration (EAI) view, Figure 10-9 is a simple schema of heterogeneous applications 

that communicate via a conventional middleware layer that handles various properties 

related to their interaction (e.g. reliable messaging, logging, persistence).  

 

 
Figure 10-9: Conventional Middleware 

 In the more open environments typical of service-oriented computing, a number of 

shortcomings of the conventional view of middleware become apparent, particularly 

with cross-organisational Web services rather than conventional middleware 

integration within a single organisation. Cross-organisational composition of services 

involves issues such as lack of trust and asynchronous long-lived transactions, as well 

as deployment issues such as the location of the middleware in a distributed system 

(Alonso, Casati, Kuno, and Machiraju, 2004). 

 The other major shortcoming of the conventional middleware concept is the 

necessity for all the parties to an interaction to agree on, and use, interoperable 

standards. In the fast-changing world of Web services, although the basic technology 

for handling point-to-point interactions is well established and accepted, standards for 

handling more complex interactions such as WS-Coordination, WS-Agreement, OWL-

S, and so on, are still evolving and are sometimes overlapping, depending on the 

domain and the originating standards body (e.g. (W3C, 2004), (OASIS, 2005), (Global 

Grid Forum, 2004), etc.). In order to build adaptable applications in this changing and 

uncertain technical context, it would be desirable for applications to be able to make 

use of heterogeneous standards, while not being bound to any one standard.   Although 

we cannot do without standards, the challenge remains to create integrated applications 

that can make use of the heterogeneous middleware technologies, but that are not 

dependent on any particular technology. To use an analogy: programming languages 

like Java can run on heterogeneous operating systems by providing an independent 

layer (Bytecode running on the JVM) between the application code and the operating 

system. In order to preserve this ‘Write Once, Run Anywhere’ approach to software 
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development, we need to avoid tightly coupling the application to the execution 

environment, whether that environment be an operating system or middleware.  

 ROAD can be viewed as an “application-specific” middleware. Application-

specific middleware might sound like a contradiction of terms, because middleware 

standards and technologies are almost by definition generic. However, in application-

specific middleware, like conventional middleware, all messages between the 

component services pass through a middleware layer. In addition, the application-

specific middleware provides adaptive structures for the composition, control of service 

interactions, and the measurement of QoS of those interactions. Application-specific 

middleware performs no domain-specific function by itself; instead, it provides abstract 

functional roles that can be played by other entities. These roles form adaptive 

structures, tailored to the particular application, for the composition and control of 

service interactions.  

 

 
Figure 10-10: Schema service composite as application-specific middleware 

 As shown in Figure 10-10 above, application-specific middleware can be viewed 

as an extra layer that provides a level of indirection and management between services. 

This middleware consists of ROAD composite(s) of dynamically contracted roles 

which are played by the various services in the composition. The services that play 

roles can use whatever middleware standards they are built to, provided the service 

composite has adaptors that support those standards. The composite therefore functions 

as an interoperability bridge (Emmerich, 2000). 

 As well as performing the function of an inter-operability bridge, ROAD 

composites as middleware have the advantage of being able to: 
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• be distributed. Composites are, themselves, services that can be distributed. 

• have each business organisation deploy and maintain its own composite that 

models its concerns. This would be the case in Figure 10-2 if the Libraries and 

the Broking Service had different owners.  These middleware composites would 

communicate via their management interfaces, and via the functional role they 

play in each other’s composite (the Library composite playing the Client role in 

the Broking Composite, and the Broking Composite playing the Supplier role in 

the Library composite). Ownership of composites is important because the ability 

to trigger a change in requirements or structure within a middleware composite 

raises the issue of which services have the authority to make changes in the 

composite. In our example, we would not want a book seller arbitrarily changing 

the terms-of-trade with a broker or client. The ability to distribute and ascribe 

ownership rights to composites helps organisations achieve secure cooperation in 

open environments. 

• be recursively composed so that they can model complex multi-layered business 

domains 

• have entities that map naturally to those domains. Composites can be used to 

model business entities, while contracts also map naturally to cross-

organisational service-level agreements 

• adapt to changing requirements and measured performance of the services that 

they compose.  

To fully implement an application-specific middleware such as ROAD, further work 

needs to be done in integrating ROAD composites with standards for service discovery, 

coordination and the negotiation of service-level agreements. Research challenges also 

remain such as how to dynamically generate adaptors to overcome the heterogeneity of 

service middleware technologies; how to represent protocols of services (required order 

of exchanged messages); how to address different non-functional requirements such as 

security; and how to incorporate mechanisms for negotiation between composites that 

belong to different organisations. 

10.8. Summary 
The above case study presents a role-oriented approach to implementing a composite 

application that can maintain dynamic, yet long-term, relationships between 

commercial entities via Web service infrastructure. ROAD composites can be used to 

model role relationships between business functions, and these composites can be 

separately owned, deployed and maintained by different commercial entities. Abstract 
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performative contracts that model business relationships suitable for creating virtual 

enterprises are defined. Because ROAD supports heterogeneous players, the model can 

include players that are Web services, software components and humans. Role models 

can therefore represent processes outside a computational domain; for example, a 

receiver player may do a physical check to see if the books ordered have been 

delivered. The case study also shows how non-numerical and multi-variant 

requirements can be passed as utility objects between composite organisers. ROAD 

composites can be viewed as a form of application-specific middleware that acts as an 

inter-operability bridge, that is fully distributable, and that maps well to business 

organisation and ownership domains. 

 
 
 



 

 

11  
 
Analysis and Discussion 

This thesis presents both a conceptual meta-model for adaptive software systems (in 

Part II), and a framework for implementing that meta-model in a runtime system 

(Chapter 8). This chapter evaluates the ROAD framework both at the conceptual level 

as an approach to adaptive software architecture, and the framework’s current 

implementation as a ‘proof-of-concept’ prototype.  

 The first section of this chapter evaluates how well the ROAD meta-model 

expresses those qualities necessary in an adaptive software system. The ROAD 

framework is evaluated in terms of the characteristics we used in Chapter 3 to discuss 

the various approaches to creating adaptive architectures.  

 The second section of the chapter discusses the prototype implementation in terms 

of the runtime overhead it imposes. ROAD defines an organisational middleware 

structure through which passes all communication between the application’s functional 

runtime entities. This interposed message-intercepting structure creates an overhead 

compared to, say, the communication between two directly communicating objects. 

The run-time performance overhead of a ROAD application therefore needs to be 

characterised relative to such direct communication. We also compare the overhead 

imposed by ROAD middleware to the overhead imposed by Web service infrastructure, 

which is the predominant middleware for more open inter-organisational application 

integration. 
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11.1. Comparative expressiveness of the ROAD framework  
In the literature review in Chapter 3, a number of adaptive software architectures were 

reviewed in terms of a range of criteria. In Section 3.3 these were categorised into 

criteria related to (re)configuration of the structure of the software, regulation of 

performance of non-functional requirements across that structure, and the nature of 

management of adaptation. In this section we will use these criteria (the italicised 

numbered points below) to characterise the ROAD framework, and to evaluate how 

expressive (capable) it is relative to other adaptive architectures. 

  
1 Configuration 

1.1. Reconfiguration possible at runtime. 
A ROAD application can create (and destroy) two distinct types of connection at 

runtime: contracts between roles, and role-player bindings. It can also create new roles. 

These configuration mechanisms are defined in the composite’s organiser role, and the 

decisions about reconfiguration are made by the organiser player. However, the current 

implementation of ROAD has a limitation in this regard, in that it relies on type-

compatibility to ensure that structures are functionally well composed, rather than 

representing the composition using some underlying formalism (e.g. π calculus) that 

allows machine reasoning across the entire structure. It follows that the creation of new 

types of composition is a human design-time activity rather than an automated runtime 

activity, unless it can be supported by external mechanisms for ensuring functional 

compatibility such as WSDL/UDDI (not to mention semantic or behavioural 

compatibility) or unless compatibility can be checked by very smart organiser players.  

1.2. Composition based on declarative description possible at runtime. 
In its current implementation, ROAD roles, contracts and composites are Java types 

that need to be statically defined. However, these entities can be empty structures, the 

contents of which are dynamically created (e.g. terms are added to a contract at 

runtime, and roles and contracts are dynamically created by the composite). Instantiated 

ROAD composites can therefore be declaratively defined, subject to the types that are 

used in the structure being predefined. A future extension to ROAD could use the 

reflective capabilities of Java to declaratively define contract, role and composite types. 

1.3. Functionally recursive structure. 
One of the strengths of ROAD is that it allows recursive composition/decomposition of 

composites at runtime. Many dynamic architectures are only concerned with the 

dynamic reconfiguration of black-box components. In ROAD, on the other hand, 

composites are themselves players that play roles, and these composites can be replaced 
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or modified at runtime. This facilitates dynamic decomposition as well as dynamic 

reconfiguration. In this sense, it is conceivable that, subject to sufficient intelligence in 

the organisers, an entire ROAD application could be redesigned at runtime, rather than 

being constrained by fixed role or component decompositions.  ROAD adaptive 

composites can be created representing various levels of the decomposition at different 

levels of granularity, with each composite managed independently.  

1.4. Non-functional restructuring supported. 
In ROAD, roles are instances. It follows that multiple roles can be of the same type, be 

created in parallel, and yet serve a single functional purpose. The reality of varying 

role-player performance can therefore be reflected in the runtime configuration, rather 

than having roles represent only abstract function.  

1.5. Elements can be substituted (indirection of instantiation supported).  
Like most dynamic architectures, ROAD supports the runtime substitution of 

players/components. ROAD supports queuing to maintain communication state during 

structural reconfiguration and to cope with player absence (see point 1.8 below). 

However, because in ROAD it is the players who maintain domain state, further work 

needs to be done to ensure that players can be safely substituted, so that the domain 

state of the system as a whole is preserved.  

1.6. Supports heterogeneous components. 
ROAD is designed to facilitate the composition of heterogeneous players (components, 

services, agents, UIs). The adaptors that convert between different technologies are 

kept separate from the roles, and can be added dynamically to the composite. The 

ROAD prototype implementation currently can work with Java and Web service 

players. Further work needs to be done to extend the range of adaptors (e.g. CORBA, 

J2EE, FIPA-ACL), and to create mechanisms that can automatically generate adaptors 

that are type-compatible. 

1.7. Structure is entirely defined and controlled by management. 
ROAD maintains a strict separation between process (as performed by the players) and 

the structure of the roles and the contracts (as managed by the composite organiser). 

The fact that ROAD players are ignorant of the structure facilitates substitutability of 

those players. If a player needs to deal with multiple role-players of the same type, this 

needs to be done by using data based mechanisms such as tracking transaction IDs, 

rather than by players maintaining structural references to each other (e.g. in the 

previous chapter’s Book Broker example, the agent playing the Shopper role would use 
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Order IDs to distinguish transactions and the role would be responsible for routing 

messages). 

1.8. Partial instantiation possible. 
Message queuing in ROAD roles allows an application that is built using the ROAD 

framework to continue to function at some level, even if not all players are present at 

any one time in the structure. This approach facilitates player substitution and could be 

used to support the lazy instantiation of players. 

1.9. Formal reasoning about structure possible. 
As mentioned in point 1.1 above, ROAD does not currently support formal reasoning 

across a composite structure, or the checking of compatibility other than basic type 

checking. In open systems, functional interfaces not only have to be syntactically 

compatible, but also need to be semantically and behaviourally compatible. Ensuring 

compatibility of such interfaces is still very much an open area of research. Preliminary 

work has been done on developing a relational structure of ROAD programming 

entities which will allow some checking for integrity (see the discussion of 

ROADmaker in Chapter 8.7), but this work is outside the scope of this thesis. 

 

2 Regulation 

2.1. Non-functional regulation possible. 
Contracts are first class entities in ROAD, and provide the basis for implementing non-

functional regulation. Contracts store non-functional requirements in the form of utility 

functions attached to contract terms. They also provide mechanisms that enable the 

measurement of performance with respect to those requirements. These requirements 

can be altered dynamically and transmitted between composites. 

2.2. Control dynamics supported. 
While control dynamics is not explicitly addressed in ROAD, the ability to pervasively 

define measurement points (and thus control variables) throughout the structure 

provides the basis for implementing control-theoretic concepts such as control of 

hysteresis and feedback. Domain-specific organiser players would function as dynamic 

controllers.   The specification of the capabilities of these players is beyond the scope 

of the ROAD framework and this thesis. 

2.3. Utility can be defined arbitrarily 
The ROAD framework provides some generic time-based utility functions, but any 

utility function that the application programmer wants to define can be attached to the 

performance measurement points in a contract term. 
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2.4. Utility requirements can be changed dynamically. 
In ROAD, the requirements of a contract can be dynamically changed by altering the 

utility function settings associated with a contract term. These utility functions are Java 

objects, and their parameters can be changed at runtime. These changes to NFRs are 

instigated by the composite organiser, who creates them in response to the NFRs it 

receives over its management interface. 

2.5. Type of utility can be changed dynamically. 
New types of ROAD utility function can be dynamically attached to contract terms at 

runtime. During an interaction, when a measurement point in a contract term is 

reached, any utility function attached to that point will be evaluated.  

2.6. Multi-dimensional utility supported. 
Multiple utility functions can be evaluated for contract transactions, and these functions 

can be aggregated, as discussed in the previous chapter. Organiser players could also be 

implemented that combine the performance measures from a number of contracts in 

their composite. 

 

3 Management 

3.1. Mechanisms for determining the need for reconfiguration or regulation 
are defined. 

In ROAD, the mechanisms for monitoring performance are defined in contracts whose 

terms assess the utility of transactions with respect to contract requirements. This 

performance information is then passed to the organiser, whose player then applies 

strategies to determine whether or not regulation or reconfiguration is needed, based on 

the composite’s obligations as defined in the role the composite plays in the ‘enclosing’ 

composite.  

3.2. Management as separate entity. 
Rather than being encapsulated in a single entity, ROAD management functions are 

performed by a separate system consisting of contracts, organiser roles, organiser 

players, and the management interface connections between composite organisers.  

3.3. Management exogenous versus endogenous. 
The ROAD management system can be exogenously imposed on the functional players 

without needing access to the internal implementation of those components. Measured 

performance in ROAD is always the measurement of a component’s interactions with 

respect to the organisation, rather than the measurement of some internal assessment of 

performance. Required performance is defined in the terms of the contract(s) that 
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obligate a role that is played by a player. However, while ROAD does not define how 

domain-specific players are implemented, some players may need to be sensitive to 

changes in their role’s obligations.   

3.4. Management distributed versus centralised. 
ROAD management is distributed to the composite level with each composite having 

its own organiser.  Organisers are only concerned with relations in their own 

composite, and are not aware of how other composites (e.g. sub-composites) are 

managed.  

3.5. Management structure not subject to a single point of failure. 
ROAD applications can be subject to a single point of failure to the extent that 

composites are constructed hierarchically. For example, if a composite player fails then 

all the sub-composites and players composed by the failed composite will be 

inaccessible to the enclosing composite. ROAD does not have (indeed very few other 

software architectures have) a distributed architectural description as found in 

(Georgiadis, 2002). However, ROAD composites could be built to cater for redundancy 

(for example having multiple players available to play the same role), and the 

management and reconfiguration capabilities of ROAD provide a natural way to 

implement reliable systems.  

3.6. Separate management structure. 
ROAD has a management structure in the form of a network of organisers. NFRs and 

performance data are both encapsulated in utility objects that flow over this network.  

3.7. Management can find and/or select components (resolves indirection of 
instantiation). 

In ROAD, organiser players are responsible for finding suitable candidate components, 

and selecting the best candidate. The specification of these domain-specific players is 

outside the scope of the ROAD framework.   

3.8. Management mechanisms can be superimposed a posterior on functional 
components. 

ROAD organisational structures can be superimposed on components that have not 

been designed to participate in such a structure. This presupposes that the requirements 

of roles in the structure are compatible with the pre-existing players, or that suitable 

adaptors are implemented to make the role compatible with the player. 

3.9.  Management updatable. 
In ROAD, the management decision making process is the responsibility of organiser 

players. The ROAD framework does not define domain-specific organiser players or 
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management strategies (sequences of reconfiguration operations in response to 

performance data and NFRs). In its current implementation, ROAD does not define any 

formalisms for representing strategies or methods for accessing such strategies within 

an organiser player. Improvement of strategies by learning could also be a possible 

attribute of organiser players. While such capability can be accommodated in the 

ROAD schema, it is outside the scope of the ROAD framework. 

3.10. Management  substitutable. 
 An organiser player can always be substituted with a more capable player, as the 

reflective representation of the composite and mechanisms for manipulating the 

structure are defined in the organiser role. 

3.11. Supervisory control possible. 
Supervisory control is a special case of organiser player substitution, as defined in the 

previous point. In this way management control can be overridden by external control 

(e.g. a human controller) if the circumstances warrant this (e.g. the automated organiser 

cannot find a configuration that meets the obligations of the composite).  

3.12. Costs of reconfiguration estimated. 
No in-built mechanisms for estimating or measuring the cost of reconfiguration are 

currently implemented in ROAD.    

4 Other  

4.1. Implementation apparent. 
A proof-of-concept prototype of the ROAD framework has been implemented. Further 

work to be done on the framework is discussed in the final chapter. 

 Table 3.1 from Chapter 3 is reproduced below. This table compares adaptive 

architecture according to the above criteria and summarises the extent to which the 

ROAD framework meets the criteria. 

 

 

 

 

 

 

 

 



Chapter 11   Analysis and Discussion 201 

 

Table 11-1: Summary of the characteristics of adaptive software frameworks 
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1. Configuration          
1.1. Reconfiguration possible at runtime.  x  ~  x  ~   
1.2. Declarative composition at runtime.  x x x x x  ~  ~ 
1.3. Functionally recursive structure x x ~ ~ ~   x  
1.4. Non-functional restructuring supported ~ x ~ ~ ~ x    
1.5. Elements can be substituted      ~    
1.6. Supports heterogeneous components x ~    x x    
1.7. Blind communication  x  x x x x x x x  
1.8. Partial instantiation possible   x x x x  x  
1.9. Formal composition   ~ ~ ~ x  x x 

2. Regulation          
2.1. Non-functional regulation possible.  x ~        
2.2. Control dynamics supported.  x x x x ~  x x ~ 
2.3. Utility can be defined arbitrarily x ~     ~  x  
2.4. Utility requirements changed dynamically x x x ~  ~ x   
2.5. Type of utility changed dynamically. x ~ x ~ ~ ~ ~    
2.6. Multi-dimensional utility supported. x ~    ~    

3. Management          
3.1. Can determine the need for 

reconfiguration 
x ~ ~ ~  ~    

3.2. Management as separate entity. x     ~  x    
3.3. Management exogenous  x ~     x x x  
3.4. Management distributed   ~  x ~  x     
3.5. Management structure not subject to 

single point failure  
 x x  x x x ~ x 

3.6. Separate management structure. ~   ~       
3.7. Management can find /select entities  x ~   ~  ~ ~ ~  ~ 
3.8. Management mechanisms superimposed  ~  x x x x x x x  
3.9. Management is updatable. x  ~ ~ ~ x x x ~ 
3.10. Management is substitutable. x  ~ ~ ~ x x x  
3.11. Supervisory control possible. x x ~ x   ~   
3.12. Costs of reconfiguration estimable.  x x x x  ~ x x x 

4. Other           
4.1. Implementation is apparent.   ~        

 
 Of the approaches to adaptive architecture discussed in Chapter 3, the most similar 

to ROAD are the Rainbow family (Garlan, Cheng, Huang et al., 2004) and ConFract 

(Collet, Rousseau, Coupaye et al., 2005). We will briefly compare these frameworks 

with ROAD. 

 Rainbow provides a reusable infrastructure with a management layer that models 

the application’s architecture. This architecture layer has an adaptation engine and an 

adaptation executor that are similar, respectively, to ROAD’s organiser player and 

organiser role. This adaptation engine makes decisions (selects strategies) on what 

needs to be changed on the basis of changes in the system layer indicated by 

monitoring probes. Like ROAD this management is exogenous, but in Rainbow the 

instrumentation is assumed to be embedded in the functional components, rather than 
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being well-defined measurement mechanisms provided for in the infrastructure. In 

ROAD monitoring is integral to the organisational infrastructure in the form of contract 

terms. Management strategies in Rainbow are globally defined across the structure 

(similar to an architectural style). While it is conceivable that Rainbow applications 

could be modularised into self-managed composites like ROAD, there is no description 

of how such Rainbow modules could be composed, or how they would form an 

integrated adaptive system; as is enabled by the recursive composition of ROAD 

composites and the management system between composite organisers. 

 Like ROAD, ConFract is a contract-based framework that supports recursive 

composition. ConFract components have many similarities to ROAD composites. A 

ConFract component membrane is similar to the composite’s external role. Both 

ConFract components and ROAD composites can be partially instantiated, and both 

have controllers.  As described in Chapter 3, ConFract has a number of different types 

of component-wide contract whereas all contracts in ROAD are between two role 

instances. Like ROAD these contracts define both the structure and quality of 

interactions but, being component-wide, ConFract contracts, in the form of executable 

assertions, can express and enforce more complex behavioural dependencies between 

subcomponents. In ROAD these assertions (in the form of contract terms) are 

distributed down into the binary contracts by the composite organiser. In ConFract, 

specifications (and thus contracts) can be related to the external interface of a 

component, or the internal and external parts of a composite.  ROAD, on the other 

hand, radically separates external function (role) from implementation (player). In 

ConFract, replacing an implementation (player) involves generating a new contract(s) 

from a new or existing specification. While it is feasible, indeed desirable, in ROAD to 

implement the declarative definition of self-managed composites, this is not yet 

supported in the current implementation of the ROAD framework. ConFract 

emphasises the definition of constraints in contracts at design-time, however details of 

its runtime management mechanisms have not, as yet, been published in the English 

language journals. 
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11.2. Runtime overhead 
In this section we examine the ROAD framework prototype in terms of the runtime 

overhead it imposes. ROAD defines an organisational middleware structure through 

which passes all communication between the application’s functional runtime entities. 

This message-intercepting interposed structure creates some overhead. 

11.2.1. Factors in overhead 
To provide a preliminary characterisation of the overhead imposed by the ROAD 

framework, we compare a method invocation through the ROAD framework with a 

direct method invocation from one object to another. In general there can be a number 

of sources of overhead that arise from the ROAD framework. These extra steps can 

include: 

1. Passing the invocation via a role 

2. Interception method invocation 

3. Invoking before and after aspect advice to call any utility functions 

4. Calculating utility functions associated with an interaction 

5. Marshalling of methods into messages and queuing them in the role 

6. Converting messages from Java into external formats e.g. SOAP. 

There are also a number of overheads involved with reconfiguration operations, such as 

the time it takes to create new contracts, bind players to roles, discover and evaluate 

potential players and so on. Such restructuring operations are likely to be ‘out-of-band’ 

(Coulson, Blair and Grace, 2004); that is, relatively infrequent compared to operational 

interactions. Although they may be relatively infrequent, these reconfiguration 

overheads will still need to be characterised in a domain-specific application, as the 

organiser players will need to know these costs to enable them to perform cost-benefit 

analyses of adaptation strategies. However, we will not attempt to characterise the 

performance of these reconfiguration operations here because the costs of creating the 

internal configuration in the ROAD composite (e.g. adding a role, creating a new 

contract, referencing a new player) are likely to be insignificant compared with the 

costs of creating the external links to domain specific players (e.g. service discovery, 

SLA negotiation, adaptor generation, and so on.). The functions and the strategies to 

implement reconfiguration are the responsibility of organiser players and, as such, are 

outside the scope of this thesis.  
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11.2.2. ROAD tests 
To quantify the relative significance of different sources of overhead in the ROAD 

framework, a number of tests were run. These tests entailed invoking a standard 

asynchronous transaction (an invocation of a method and response). In each type of test 

this transaction passed through different, and increasingly more complex, 

configurations of the ROAD middleware framework. For each configuration the stand-

ard method was invoked in a loop multiple times (100 to 100,000 iterations depending 

on the speed of processing the invocation) and the total time to process all iterations 

was measured. This total time was divided by the number of iterations in order to 

calculate the duration of a single transaction. This process was repeated multiple times 

to obtain a mean measurement for the invocation over each of the middleware 

configurations.  The standard method invoked was kept very small (a simple arithmetic 

calculation performed 100 times), so that any change in overhead imposed by the 

middleware would be relatively large, and thus could be detected. All tests were 

performed on the same machine1, and Web service invocations were executed on a 

server2 running as a local host to remove any routing or network variability. 

 All tests invoked the same method but the test cases progressively added ROAD 

features as listed in the previous subsection. The test configurations are listed below 

with an identifying name and a short description.  

1. 01_Object-to-Object. This is a benchmark test consisting of a standard 

invocation of a method from one object to another, and its asynchronous 

response.  

2. 02_RolePlayer-RolePlayer. In ROAD, all invocations pass through roles, 

which involves an extra method call.  

3. 03_Contract. In this test all method invocations between roles pass through a 

contract which intercepts the message and checks that it is authorised under the 

terms of the contract (using pointcut matching defined in the aspect). 

4. 04_ContractWithAdvice. In this test a simple time-based utility function is 

invoked in the before and after advice of each transaction to measure how long 

the transaction takes. Updating the utility function involves the overhead of 

reflectively accessing the joinpoint’s execution context, and passing details of 

the method signature and the invoking object to the utility function object that 

is attached to the contract term. 

                                                 
1 Pentium 4, 3.0 Ghz, Hyper Threading 512 Mb RAM running Windows XP SP2, Java 2 Runtime 
Environment, SE, HotSpot™ Client VM (1.5.0_06-b05)  
2 Server running Tomcat v 5.5.16, Apache Axis2, SOAP v1.2, data binding XMLBeans, client code 
generated by Axis2 WSDL2Java tool. 
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5. 05_MessageQueue.  In this test the receiving role encapsulates the request 

invocation into a message object, and stores it in a queue. A message processor 

in the role passes the message to its role player when it is ready. 

6. 06_WS_NoQueue. In this configuration the target method resides on a Web 

server. The target role delegates the invocation to a Web service proxy that 

uses a Java to SOAP engine to convert and send the message to the Web server. 

The Web server then de-marshals the SOAP message. This process then 

operates in reverse for the response message. 

7. 07_WS_Queue. This is the same as the previous case except that the target role 

buffers incoming messages in a queue before passing them to the Web service 

proxy player. 

11.2.3. Results and discussion 
Each run of a test involved the repeated invocation of a transaction (request and 

response) over a configuration of ROAD middleware, as shown in Table 11-2 below. 

The total time to execute the test run was divided by the number of transactions in 

order to calculate the duration of a single transaction. Each run of transactions was 

repeated 50 times, and the mean duration of each transaction was calculated.  The table 

also includes a column that indicates the relative overhead cost of each of the 

configurations. These ratios are based on the invocation of a very small process in the 

player, and will, of course, decrease as the time taken to execute the process increases 

relative to the overhead. Variation between runs of the same test configuration, as 

measured by the coefficient of variation (σ/µ*100), was less than 10% in non-Web 

service transactions, increasing to less than 20% in Web service transactions.  

Table 11-2: Mean time in milliseconds and relative duration to perform a standard 
transaction for each middleware configuration 

Configuration 

Transactions 
per test run

Mean Time 
(msec) per 

transaction

Time 
relative 

to test 1 

Coefficient 
of 

variation 
01_Object-to-Object 100,000 0.00094 1 5.3%
02_RolePlayer-to-RolePlayer 100,000 0.00094 1 6.9%
03_Contract 10,000 0.01316 14 2.0%
04_ContractWithAdvice 10,000 0.06110 65 7.7%
05_MessageQueue 10,000 0.11355 121 9.9%
06_WS No Queue 100 7.70700 6632 17.3%
07_WS Queue 100 8.58455 7017 19.5%

 
 As can be seen in Table 11-2, passing invocations via roles (Test 2) imposed no 

detectable extra overhead relative to the Object-to-Object reference test (Test 1). 

Standard ROAD features implemented in Test 3, 4 and 5 (interception contracts, 
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performance measurement and queuing, respectively) imposed successively greater 

overheads, up to approximately 1/10 millisecond per asynchronous transaction.  

 Test 3 is representative of the case where contracts are used to ensure that only 

authorised transactions occur between roles. These results indicate the relative 

efficiency of using association aspects pointcuts to implement method interception (as 

opposed to message interception and inspection), an efficiency which is not surprising 

given the interception code is woven into the role’s code at compile time. Association-

aspects do impose a small additional overhead viz ordinary AspectJ aspects, as the 

association-aspect is a separate object, but Sakurai (Sakurai, Masuhara, Ubayashi et al., 

2006) has shown that this overhead is relatively small. 

 Test 4 is representative of the case where contracts are used to measure the 

performance time of a contracted interaction. The increase in overhead (~ 5 times the 

non-measurement case) is due to the need to access the execution context. This context 

is accessed in order to obtain a reference to the contract parties, to obtain a 

measurement of the system time, and to update the utility function. If the domain 

application requires the calculation of more complex utility functions with each 

interception, then an additional overhead would be imposed.    

 Use of queuing (Test 5) approximately doubles the overhead relative to Test 4. In 

domains where high speed performance is a requirement, consideration might be given 

to the judicious use of message queuing. For example, queues might only be used in 

those roles that are required to store communication state, or an organiser might only 

activate a queue when it is about to swap a player.     

 However, as can be seen from Figure 11-1 below, the overhead imposed by the 

ROAD middleware as indicated by Tests 3, 4 and 5, is insignificant relative to the cost 

imposed by the Web service infrastructure, even when network transmission costs are 

removed.  In a Web service context, ROAD middleware only accounts for between 

0.9% (without queue) and 1.7% (with queue) of the total middleware overhead. 
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Figure 11-1: Mean duration per transaction (msec) for different configurations of ROAD 

and Web Service middleware 

 We can conclude that using ROAD in a Web service context imposes no 

significant overhead relative to the Web service middleware. As the maximum absolute 

overhead (ignoring the cost of any domain-specific utility functions) was of the order of 

a 1/10 of a millisecond per transaction on a standard PC, ROAD could  also be 

effectively used in situations where the processing time of the players is significantly 

greater than this value (e.g. manufacturing control). 

11.3. Summary 
In terms of the characteristics of adaptive architectures described in Chapter 3, the 

properties of an application built using the ROAD framework can be summarised as 

follows. The ROAD framework supports the heterogeneous composition of self-

managed composites. ROAD composites support two type of reconfiguration, namely 

limited non-functional reconfiguration of the role-structure and functional component 
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(player) substitution. A composite role-structure does not always have to have all of its 

roles assigned to players, in order for the composite to be viable. ROAD also supports 

regulation of composites through the ability to dynamically set the terms of contracts 

that connect roles, and by providing in-built monitoring mechanisms that can check if 

the actual performance of role-players meets the requirements defined in their 

contracts. The utility functions used to monitor performance can be dynamically 

changed at runtime. The management in ROAD is exogenous in that management 

structures can be superimposed onto pre-existing components, and no access is required 

to the internals of those components. ROAD composites can be recursively composed 

with each composite in the composition at a different level of granularity. The self-

managed nature of ROAD composites can provide a basis for reliable systems that can 

handle complexity by limiting the concerns of any one organiser to a role composition 

at a single level of abstraction. The overall regulatory behaviour of an application is 

achieved by requirements and performance data flowing over a management system 

between composite organisers. Organiser players are separable from the roles they play, 

allowing players to be substituted or upgraded to more capable players with different 

adaptive strategies.  

 At runtime, the ROAD middleware does impose a performance penalty because 

the interactions between components are intercepted and may be monitored for 

performance. Message queuing mechanisms also impose an overhead. Depending on 

the configuration, this total overhead is up to approximately 120 times a standard 

asynchronous transaction between two Java objects. In absolute terms, this overhead 

was approximately 1/10 millisecond per asynchronous transaction on the testbed PC. 

However, in the context of Web services technologies which are becoming the industry 

standard for service composition, the overhead of the ROAD middleware framework is 

relatively insignificant, being less than 2 percent of the total overhead incurred by Web 

service middleware. 

 
 
 



 

 

12  
 
Conclusion 

This chapter concludes the thesis by discussing its contribution to research into 

adaptive software systems.  We then discuss the future work that could to be done to 

further develop the ROAD approach to developing ontogenically adaptive software. 

12.1. Contribution  
The major contribution of this thesis is to show how adaptive software systems can be 

devised that can respond to both changes in requirements and to changes in the 

environments in which these systems operate.  A novel framework has been developed 

to facilitate the creation of adaptive and adaptable applications that are scalable, 

distributed, grounded, recursively structured and self-managed. A summary of the key 

characteristics of this ROAD framework, and how it compares with other adaptive 

architectures, can be found in section 11.1 of the previous chapter.  We have 

demonstrated how an application built on this framework can adaptively restructure 

itself in response to changing conditions.  

 As well as developing the ROAD framework, a number of additional contributions 

have been made to software engineering both at conceptual and technical levels. These 

are listed below. 

 This thesis shows how the biologically-based concepts of ontogenic adaptation and 

organisation can be applied to software. The concept of adaptation is often used in a 

confused or muddy way in software engineering. Different types of adaptation need to 

be clearly distinguished. This thesis draws on the work on biological cognition by 

Maturana and Varela (1980) to distinguish ontogenic adaptation from other types of 

adaptation (evolutionary adaptation and environmental manipulation), and shows how 
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the concept of ontogenic adaptation can be applied to goal-directed software systems. 

Key to this definition of ontogenic adaptation is the concept of autopoiesis, i.e. the 

maintenance of organisational relationships within a viable system. This thesis 

proposes that software systems should be viewed as organisations that have as a 

primary goal the maintenance of such homeostatic relationships both within the system, 

and between the system and its environment. We introduce an analytical framework for 

evaluating to what extent adaptive software architectures conform with the principles of 

ontogenic adaptation.  

 The conception of organisation in this thesis is based on three principles. The first 

two principles derive from systems theory: the first being the separation of control from 

process, and the second the being the recursive distribution of control down through the 

organisational structure (or viewed from the bottom up, the creation of successively 

higher levels of control). This thesis proposes a third principle: the strict separation of a 

role from the player that executes that role. Software organisations are viewed as 

dynamic loosely-coupled role structures analogous to a human organisation. While 

other approaches (e.g. (Herring, 2002; Cai, Cangussu, DeCarlo et al., 2004)) have 

proposed a cybernetic view of software as a control system, to the best of our 

knowledge the role-based organisational view propounded here is unique.  

 This thesis clarifies the concept of software roles by distinguishing between (i) 

roles as descriptors for association-ends, (ii) player-centric roles that add functionality 

to a stable entity, and (iii) organisation-centric roles that represent stable abstract 

functions (goal-oriented positions) within an organisational structure. These are distinct 

concepts that are often blurred or confused in the literature on software roles. While the 

concept of an organisation-centric role is not unique to this thesis, in that it appears in 

some object-oriented and agent-oriented literature (e.g. (Baldoni, Boella and van der 

Torre, 2005b; Odell, Nodine and Levy, 2005; Zambonelli, Jennings and Wooldridge, 

2000)), the conception of functional roles in this thesis is distinct from other 

approaches. ROAD role instances are middleware runtime entities that define an 

abstract function, perform messaging and queuing functions, but do not, in themselves, 

execute any domain function.  While other role-based views of software organisations 

have been developed (e.g. (Baldoni, Boella and van der Torre, 2005a; Herrmann, 

2005)) these approaches are not per se adaptive. 

 Complex human organisations typically define roles that allow the players varying 

degrees of autonomy and thus require varying capability from their players. Likewise, 

players in different roles within a software organisation may be heterogeneous (objects, 

components, services, agents or humans), and have very different degrees of autonomy 
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and capability. Indeed, we argue that this differentiated autonomy is a necessary 

attribute of complex, goal-directed organisations (Colman and Han, 2005). This thesis 

proposes a novel conceptual scheme for defining the relationship between roles and 

players, based on five levels of autonomy that roles can allow their players. We show 

how these levels effect the implementation of roles and players. As software systems 

become more complex and open, composite structures will need to facilitate such 

heterogeneity. 

 Roles in ROAD are associated by contracts. This thesis introduces a novel 

conception of software contracts. The concept of a contract has often been used in 

software engineering, predominately as means to enforce conditions at the interface of 

a component (e.g. (Meyer, 1988)). As discussed in Chapter 3, contracts have also been 

used as a means of composition in adaptive architectures (e.g. (Collet, Rousseau, 

Coupaye et al., 2005)). A service level agreement that sets out QoS requirements can 

also be thought as a type of inter-organisational contract, such as can be specified in 

WSLA (IBM Corporation, 2003). ROAD contracts are instances of binary associations 

between role instances that combine aspects of all of the above conceptions; namely, 

interaction control, composition, and performance. ROAD contracts exist as a type, as 

an individualised specification, and as an implementation entity that monitors and can 

enforce aspects of the specification. This thesis also introduces the concept of contract 

abstraction. Abstract performative contracts allow common interaction patterns to be 

defined and reused. The performative contracts provided by the ROAD framework can 

also be extended by the application programmer to create domain-specific contracts 

that can then be instantiated with concrete contracts. 

 At the technological level, this thesis shows how association aspects (Sakurai, 

Masuhara, Ubayashi et al., 2006), can be used to implement ROAD contracts. While 

aspects have previously been suggested as a means of implementing interface-

enforcement contracts (e.g. (Kendall, 1999)), in order to implement ROAD contracts 

we need to be able to create aspect instances that associate groups of (role) objects. 

Association-aspects provide this facility, and, as such, this thesis provides a novel use 

of association aspects. 

 This thesis also proposes a novel management system constituted of connected 

organisers. Non-functional requirements and performance data flow over this network 

of organisers. A ROAD management system is analogous to a business-management 

system in that it is separate from the functional system (i.e. the processes executed by 

the functional role-players), yet this management system can control individual 

relationships in the functional system (i.e. by controlling the contracts between roles). 
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The connecting points between the management system and functional system 

(process) are the contracts that the organisers control. While many adaptive software 

architectures (as described in Chapter 3) propose a separate management layer, such 

layers are typically implemented through the global application of policies that are 

targeted at the components rather than the connections. In ROAD, management is 

distributed down to the organisers of composites, and these organisers create and 

regulate the contracts.  The type of management system used in ROAD enables the 

creation of recursive and distributed organisations that scale well and decompose 

complexity into manageable modules connected by a structure (Simon, 1969). 

 This thesis also shows how monitoring can be done via the contracted role 

relationships. This facilitates the creation of management systems that are exogenous to 

the functional components, and can be imposed on these components a posterior. 

Monitoring via relationships gives ROAD the added advantage of monitoring 

mechanisms provided by the framework, rather than relying on monitoring mechanisms 

being built into the components as in other adaptive architectures (e.g. (Garlan, Cheng, 

Huang et al., 2004)).  

 Finally, in the context of service-oriented computing, this thesis introduces the 

concept of an adaptive application-specific middleware. Such middleware acts as an 

interoperability bridge that can model and implement long-term inter-organisational 

relationships between heterogeneous services.  When used with Web service 

technologies, we have shown that the overhead imposed by this ROAD-based adaptive 

middleware is insignificant, relative to the overheads imposed by Web service 

middleware.  

12.2. Future work 
The ROAD meta-model presents a broad vision of what it means for a software 

application to be ontogenically adaptive. The ROAD framework, as it is currently 

implemented, supports the key concepts of the ROAD meta-model. However, there 

remains much work to be done to enhance the framework and to develop tool support, 

before such an approach can become a widely accepted engineering reality. Throughout 

the body of this thesis, we have pointed to areas of further research and development 

that could be pursued. In particular, Section 8.6 discussed a number of aspects of the 

ROAD framework that need to be further developed in order to fully realise ontogenic 

adaptation in software applications. To summarise, this work includes: 

• Mechanisms for the aggregation of NFRs found in contracts into role “position 

descriptions”. 
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• Support for protocol and general clauses in ROAD contracts including the 

development mechanisms for the tracking protocols consisting of a number of 

transactions. Because ROAD contracts are binary, ways of coordinating 

interactions involving more than two parties need to be defined at the composite-

organiser level. 

• Development of additional organisational ‘architectural styles’ that can be 

expressed in terms of arrangements of abstract performative contracts. In our 

thesis the Widget and Broker organisation examples can be viewed, respectively, 

as command-hierarchy and supply-chain structures. Other types of abstract 

organisational structure could also be expressed, for example, pull-driven 

organisations that are controlled through resource constraints. 

• Integration with other middleware technologies and standards, in particular the 

development of role-player adaptors that can act as inter-operability bridges with 

technologies such as CORBA or agent communication languages. 

• Further development of the association-aspect mechanisms that underpin ROAD 

contracts, to support dynamic deployment of new types of contracts, and the 

ability to denote pointcuts on method annotations so that that role method names 

do not have to be mangled in order to associate them with CCA abstract message 

types. 

• Development of a generic language for the communication of NFRs and 

performance measures between organisers (only the form of the messages as 

utility objects has thus far been defined). 

•  Mechanisms to insure player transition can occur safely and without loss of 

domain state. 

• Support for the declarative definition of organisational structures, and the 

deployment of declaratively defined organisations. 

In ROAD, the decisions about when and how to regulate or reconfigure a composite are 

the responsibility of the composite’s organiser player. The definition of these domain-

specific players is outside the scope of the ROAD framework and this thesis. That 

being said, an organiser’s capability is core to the adaptive capability of the composite. 

It is therefore appropriate to mention the major research challenges that need to be 

addressed in developing such players. These challenges include: 

• Defining (a library of) strategies for composite adaptation (like that illustrated in 

Figure 7-4). These strategies would include control-theoretic strategies based on 

characterisations of the cost of reconfiguration operations. 
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• Defining formalisms and strategies for the valid and automatic decomposition of 

composite level NFRs into contracts terms between roles in that composite. 

• Implementing capabilities in the organiser that will allow composites to act as 

players in open agent or service-oriented contexts. Depending on the application 

domain, these capabilities might include player (agent or service) discovery. This 

would require organiser players be able to use standardised player discovery 

mechanisms (e.g. UDDI). Organisers may also need to perform service-level 

(QoS) and protocol negotiation, which would necessitate that internal ROAD 

contract representations be mapped to external standards for defining service-

level agreements (e.g. WS-Agreement) and collaboration (e.g. WS-

Coordination). In open or inter-organisational contexts security issues may also 

need to be addressed. 

• The current implementation of ROAD, compositions are limited to predefined 

contract types. These compositions do not define new functions. If interfaces 

could be completely described at syntactical, behavioural, QoS and semantic 

levels, then sufficiently intelligent organisers may be able to perform automated 

functional composition.  

• Advanced organisers need to be able to model the cost of reconfiguration to 

determine if the benefits of the new configuration outweigh the costs of 

achieving that new structure. For an organiser to do this, it needs to maintain 

dynamic models of the organisation. These dynamic models would be a 

prerequisite for developing advanced control-theoretic software. 

As pointed out in Chapter 8 (Section 8.7), tools need to be developed to facilitate the 

development of ROAD organisational structures and to check the consistency of those 

structures. This will require the development of a reflective meta-model of ROAD 

programming constructs (roles, contracts, composites etc.) that will allow reasoning 

about the organisational structures that are defined using those constructs. Development 

methodologies appropriate to ROAD also need to be elaborated. It would be beneficial 

to integrate ROAD with existing SDLC (Software Development Life-Cycle) 

methodologies that provide role-oriented analysis techniques (e.g. (Reenskaug, 1996; 

Juan, Pearce and Sterling, 2002; Wooldridge and Jennings, 2000)). 

 Finally, the applicability of ROAD to various application domains needs to be 

further explored. In this thesis we have described the use of ROAD to model two types 

of application domain: a manufacturing control system, and a service-oriented supply 

chain. Other types of domain could prove amenable to ROAD. These include domains 



Chapter 12   Conclusion 215 

 

such as pervasive computing and mixed-initiative control-systems that are characterised 

by volatile requirements, components and environments. 

 We began this thesis by showing how principles of systems-theory can be applied 

to the design of adaptive software architectures. Being based on these principles, the 

ROAD framework provides a way of creating organisational structures and provides 

mechanisms for regulating interactions over those structures. These regulated 

organisational structures provide a higher level of abstraction at which software can be 

conceptualised, and open possibilities for new research directions. Such organisational 

abstractions of software systems might provide the basis for the development of a 

theory of software organisation, just as a large body of management theory has been 

developed focussed on human organisations. With such a management theory we may 

begin to move beyond the basic principles of software design, such as low coupling and 

high cohesion, and beyond simple architectural patterns and styles, towards a more 

complete understanding of what makes a good software organisation: one that is both 

goal-directed and viable in open and dynamic environments. 
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1  package widgetOrg; 

2  

3 import mContract.Composite; 

4 import mContract.Organiser; 

5 import widgets.Foreman; 

6 import widgets.LazyEmployee; 

7 import widgets.Manager; 

8 import widgets.NonFnRole; 

9 import widgets.ProductionManager; 

10 import widgets.SkillfulEmployee; 

11 import widgets.ThingyMaker; 

12 import widgets.WidgetMaker; 

13  

14 /** 

15 * A test program to test the functionality of a composite, and the abilities 

16 * to swap players and to create new role at run time of organiser. 

17 * 

18 * @author Alan Colman 

19 * @author Linh Duy Pham 

20 */ 

21 public class TestComposite 

22 { 

23 public static void main(String[] args) 

24 { 

25  ProductionManager pm = new ProductionManager("Production Manager"); 

26   WidgetMaker wm = new WidgetMaker("Widget Maker"); 

27 

28   //player for ProductionManager 

29   Manager manager = new Manager("Manager"); 

30 

31  // Organiser setup 

32   WidgetDepOrganiserPlayer orgPlayer = new WidgetDepOrganiserPlayer(); 

33   Organiser org = new WidgetDepOrganiser(new WidgetDepRoleFactory()); 
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34   org.setPlayer(orgPlayer); 

35 

36   // Player for WidgetMaker --> create the WidgetDepComposite 

37   Composite widgetDepComposite = new WidgetDepComposite(); 

38   org.setComposite(widgetDepComposite); 

39 

40   //create ThingyMaker and Foreman 

41   ThingyMaker t = new ThingyMaker("Thingy Maker"); 

42   Foreman f = new Foreman("Foreman"); 

43 

44   //create other players 

45   SkillfulEmployee foremanPlayer = new SkillfulEmployee("Foreman/Thingy 

Player"); 

46   SkillfulEmployee goodThingyMakerPlayer = new SkillfulEmployee("Skillful 

ThingyMaker"); 

47   LazyEmployee badThingyMakerPlayer = new LazyEmployee("Lazy Thingy 

Maker"); 

48 

49   System.out.println("\nThere are three ThingyMaker players created."); 

50   System.out.println("Foreman/Thingy Player: performance 20 ms"); 

51   System.out.println("Skillful Thingy Maker: performance 20 ms"); 

52   System.out.println("Lazy Thingy Maker: performance at start is 10 ms, increase 

by 20 ms every time a thingy is made, with cap of 100 

ms"); 

53 

54   // add Roles and Players to composite 

55   widgetDepComposite.addRole(f); 

56   widgetDepComposite.addRole(t); 

57 

58   widgetDepComposite.addPlayer(foremanPlayer); 

59   widgetDepComposite.addPlayer(goodThingyMakerPlayer); 

60   widgetDepComposite.addPlayer(badThingyMakerPlayer); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  There are three ThingyMaker players created. 

2  Foreman/Thingy Player: performance 20 ms 

3  Skillful Thingy Maker: performance 20 ms 

4  Lazy Thingy Maker: performance at start is 10 ms, increase by 20 ms every time a thingy is 

made, with cap of 100 ms 

5 
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61   // Setup Initial Players 

62   try 

63   { 

64    //ProductionManager 

65     pm.setPlayer(manager); 

66    //WidgetMaker 

67    wm.setPlayer(widgetDepComposite); 

68 

69    //Foreman and ThingyMaker 

70    f.setPlayer(foremanPlayer); 

71 

72    System.out.println("\nStart up program with 1 ThingyMaker role, Lazy 

Thingy Maker is the initial player."); 

73    t.setPlayer(badThingyMakerPlayer); 

74   } 

75   catch (Exception e) 

76   { 

77    System.out.println(e.getMessage()); 

78   } 

79 

81 

82   System.out.println("\n\n----------------------------------------------------"); 

83   System.out.println("---- Before contract between Production Manager and 

WidgetMaker is created ----"); 

84   System.out.println("TEST: Should have error non contracted between 

ProductionManager and WidgetMaker"); 

85 

86  try 

87   { 

88    pm.do_placeOrderWidgets(); 

89   } 

90   catch (Exception e) 

91   { 

92    System.out.println(e.getMessage()); 

 

 

 

 

 

 

 

 

 

 

 

6  Start up program with 1 ThingyMaker role, Lazy Thingy Maker is the initial player. 

7 

8 

 

 

 

 

 

 

 

9  ----------------------------------------------------- 

10  ---- Before contract between Production Manager and WidgetMaker is created ---- 

 

11  TEST: Should have error non contracted between ProductionManager and WidgetMaker 

 

 

 

 

12  To user: Enter number of widgets required: 15 

13  X--X CCA call from uncontracted functional role: call(void 

widgets.WidgetMaker.do_makeWidget(int)) 

14  
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93    e.printStackTrace(); 

94    } 

95 

96   System.out.println("\n\n---------------------------------------------------"); 

97   System.out.println("---- Creating contract between ProductionManager and 

WidgetMaker ----"); 

98   // create contract 

99   ProManagerWidgetMakerContract contract = new 

ProManagerWidgetMakerContract(pm, wm); 

100 

101   System.out.println("\n\n-----------------------------------------------------"); 

102   System.out.println("---- Before contract between Foreman and ThingyMaker is 

created ----"); 

103   System.out.println("TEST: Should have error non contracted between Foreman 

and ThingyMaker"); 

104 

105   try 

106   { 

107    pm.do_placeOrderWidgets(); 

108   } 

109   catch (Exception e) 

110   { 

111    System.out.println(e.getMessage()); 

112    e.printStackTrace(); 

113   } 

114 

115   System.out.println("\n\n-----------------------------------------------------"); 

116   System.out.println("---- Create contract between Foreman and ThingyMaker ----

"); 

117   org.createContract(f, t); 

118 

119    System.out.println("\n\n-----------------------------------------------------"); 

120   System.out.println("---- Now place an order of widget ----"); 

121   System.out.println("TEST: Should produce widgets"); 

 

 

15  

16  ----------------------------------------------------- 

17  ---- Creating contract between ProductionManager and WidgetMaker ---- 

18  do_makeWidget term added to contract 

19  qry_widgetOrder term added to contract 

 

20  

21 

22  ----------------------------------------------------- 

23  ---- Before contract between Foreman and ThingyMaker is created ---- 

 

24  TEST: Should have error non contracted between Foreman and ThingyMaker 

 

 

 

 

25  To user: Enter number of widgets required: 15 

26  ---> before a1 do AtoB : call(void widgets.WidgetMaker.do_makeWidget(int)) – Calculate 

Start time. 

27  ---> after a0 error: call(void widgets.WidgetMaker.do_makeWidget(int)) 

28  X--X CCA call from uncontracted functional role: call(void 

widgets.ThingyMaker.do_makeThingy()) 

29 

30 

31  ----------------------------------------------------- 

32  ---- Create contract between Foreman and ThingyMaker ---- 

33  Utility: FTUtility: thingiesPerSec0 

34  do_makeThingy term added to contract 

35  inf_thingyMade term added to contract 

38  ----------------------------------------------------- 

39  ---- Now place an order of widget ---- 

40  TEST: Should produce widgets 
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122 

123   try 

124   { 

125    pm.do_placeOrderWidgets(); 

126   } 

127   catch (Exception e) 

128   { 

129    System.out.println(e.getMessage()); 

130    e.printStackTrace(); 

131   } 

132  } 

133 

134 } 

============= END OF INPUT ========================================== 

The rest of the output demonstrates the adaptive behaviour of the 
composite as the performance of the players change.  

 

 

 

 

41  To user: Enter number of widgets required: 15 

42  ---> before a1 do AtoB : call(void widgets.WidgetMaker.do_makeWidget(int)) – Calculate 

Start time. 

43 

44  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

45  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

46  signature: do_makeThingy 

47  Message added. 

48 

49  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

50  Thingy made by Lazy Employee named Lazy Thingy Maker, in 10 ms 

51 

52  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

53  afterUpdate Last elapsedtime 15 msec 

54  Moving average is 15.0 msec 

55  calculateUtility 

56  To user: Thingies are made. Quantity = 1 

57  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

58  signature: inf_thingyMade 

59  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

60  signature: do_makeThingy 

61  Message added. 

62 

63  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) - CalculateStart 

time. 

64  Thingy made by Lazy Employee named Lazy Thingy Maker, in 30 ms 

65 

66  <--- before b1 : call(void widgets.Foreman.inf_thingyMade())
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67  afterUpdate Last elapsedtime 32 msec 

68  Moving average is 23.5 msec 

69  calculateUtility 

70  To user: Thingies are made. Quantity = 1 

71  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

72  signature: inf_thingyMade 

73  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

74  signature: do_makeThingy 

75  Message added. 

76 

77  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

78  Thingy made by Lazy Employee named Lazy Thingy Maker, in 50 ms 

79  

80  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

81  afterUpdate Last elapsedtime 94 msec 

82  Moving average is 47.0 msec 

83  calculateUtility 

84  widgets.ThingyMaker:Thingy Maker: do_makeThingy is in breach 

85  IN BREACH 

86 

87  *** In Breach Action 

88 

89  *** Replaced by a better player 

90  To user: Thingies are made. Quantity = 1 

91  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

92  signature: inf_thingyMade 

93  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

94  signature: do_makeThingy 

95  Message added. 

96  

97  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

98  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 

99 

100  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

101  afterUpdate Last elapsedtime 93 msec 

102  Moving average is 93.0 msec 

103  calculateUtility 

104  widgets.ThingyMaker:Thingy Maker: do_makeThingy is in breach 

105  IN BREACH 

106 

107  *** In Breach Action 

108  Utility: FTUtility: thingiesPerSec0 

109  do_makeThingy term added to contract 

110  inf_thingyMade term added to contract 

111  

112  NOTE: New contract is created between object of class widgets.Foreman and object of class 

widgets.ThingyMaker 

113  To user: Thingies are made. Quantity = 1 

114  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

115  signature: inf_thingyMade 

116  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

117  signature: do_makeThingy 

118  Message added. 

119  

120  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

121  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 
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122 

123  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

124  afterUpdate Last elapsedtime 63 msec 

125  Moving average is 78.0 msec 

126  calculateUtility 

127  widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming 

128  UNDER-PERFORMANCE 

129  To user: Thingies are made. Quantity = 1 

130  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

131  signature: inf_thingyMade 

132  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

133  signature: do_makeThingy 

134  Message added. 

135 

136  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

137  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

138  signature: do_makeThingy 

139  Message added. 

140 

141  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

142  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 

143 

144  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

145  afterUpdate Last elapsedtime 63 msec 

146  Moving average is 73.0 msec 

147  calculateUtility 

148  widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming 

149  UNDER-PERFORMANCE 

150  To user: Thingies are made. Quantity = 1 

151  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

152  signature: inf_thingyMade 

153  Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms 

154 

155  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

156  afterUpdate Last elapsedtime 31 msec 

157  Moving average is 31.0 msec 

158  calculateUtility 

159  To user: Thingies are made. Quantity = 1 

160  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

161  signature: inf_thingyMade 

162  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

163  signature: do_makeThingy 

164  Message added. 

165  

166  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

167  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

168  signature: do_makeThingy 

169  Message added. 

170  

171  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

172  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 

173 

174  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

175  afterUpdate Last elapsedtime 62 msec 

176  Moving average is 70.25 msec 

177  calculateUtility 
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178  widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming 

179  UNDER-PERFORMANCE 

180  To user: Thingies are made. Quantity = 1 

181  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

182  signature: inf_thingyMade 

183  Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms 

184  

185  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

186  afterUpdate Last elapsedtime 31 msec 

187  Moving average is 31.0 msec 

188  calculateUtility 

189  To user: Thingies are made. Quantity = 1 

190  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

191  signature: inf_thingyMade 

192  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

193  signature: do_makeThingy 

194  Message added. 

195  

196  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

197  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

198  signature: do_makeThingy 

199  Message added. 

200  

201  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

202  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 

203  

204  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

205  afterUpdate Last elapsedtime 62 msec 

206  Moving average is 68.6 msec 

207  calculateUtility 

208  widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming 

209  UNDER-PERFORMANCE 

210  To user: Thingies are made. Quantity = 1 

211  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

212  signature: inf_thingyMade 

213  Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms 

214 

215  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

216  afterUpdate Last elapsedtime 31 msec 

217  Moving average is 31.0 msec 

218  calculateUtility 

219  To user: Thingies are made. Quantity = 1 

220  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

221  signature: inf_thingyMade 

222  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

223  signature: do_makeThingy 

224  Message added. 

225 

226  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

227  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

228  signature: do_makeThingy 

229  Message added. 

230 

231  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

232  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 

233  



 OUTPUT OUTPUT 

 

234  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

235  afterUpdate Last elapsedtime 63 msec 

236  Moving average is 67.66666666666667 msec 

237  calculateUtility 

238  widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming 

239  UNDER-PERFORMANCE 

240  To user: Thingies are made. Quantity = 1 

241  Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms 

242  

243  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

244  afterUpdate Last elapsedtime 32 msec 

245  Moving average is 31.25 msec 

246  calculateUtility 

247  To user: Thingies are made. Quantity = 1 

248  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

249  signature: inf_thingyMade 

250  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

251  signature: inf_thingyMade 

252  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

253  signature: do_makeThingy 

254  Message added. 

255 

256  ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start 

time. 

257  ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy()) 

258  signature: do_makeThingy 

259  Message added. 

260  ---> after a0 : call(void widgets.WidgetMaker.do_makeWidget(int)) 

261  signature: do_makeWidget 

262  Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms 

263  

264  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

265  afterUpdate Last elapsedtime 31 msec 

266  Moving average is 31.2 msec 

267  calculateUtility 

268  To user: Thingies are made. Quantity = 1 

269  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

270  signature: inf_thingyMade 

271  Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms 

272 

273  <--- before b1 : call(void widgets.Foreman.inf_thingyMade()) 

274  afterUpdate Last elapsedtime 63 msec 

275  Moving average is 67.0 msec 

276  calculateUtility 

277  widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming 

278  UNDER-PERFORMANCE 

279  To user: Thingies are made. Quantity = 1 

280  <--- after b0 : call(void widgets.Foreman.inf_thingyMade()) 

281  signature: inf_thingyMade
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