

Role Oriented Adaptive Design

Alan Colman

Submitted in fulfilment of the requirements
of the degree of Doctor of Philosophy

Faculty of Information and Communication Technologies
Swinburne University of Technology

October 2006

Abstract
Software systems are becoming inexorably more open, distributed, pervasive, mobile and

connected. This thesis addresses the problem of how to build adaptive software systems.

These systems need to reliably achieve system-level goals in volatile environments, where

the system itself may be built from components of uncertain behaviour, and where the

requirements for the software system may be changing. This thesis adopts the system-

theoretic concept of ontogenic adaptation from biology, and applies it to software

architecture. Ontogenic adaptation is the ability of an individual system to maintain its

organisational integrity by reconfiguring and regulating itself. A number of approaches to

adaptive software architecture have been recently proposed that, to varying degrees, enable

limited adaptive behaviour and reconfiguration, but none possess all the properties needed

for ontogenic adaptation. We introduce a meta-model and framework called Role Oriented

Adaptive Design (ROAD) that is consistent with the concept of maintaining organisational

integrity through ontogenic adaptation.

 The ROAD meta-model defines software applications as networks of functional roles

which are executed by players (objects, components, services, agents, people, or role-

composites). These flexible organisational structures are adaptive because the relationships

(contracts) between roles, and the bindings between roles and players, can be regulated and

reconfigured at run-time. Such flexible organisational role-structures are encapsulated into

composites each with its own organiser. Because self-managed composites are themselves

role-players, these composites can be distributed and recursively composed. The organisers

of the composites form a management system over which requirements and performance

data pass. Rather than being monolithic constructions, ROAD software applications are

dynamic, self-managed compositions of loosely-coupled, and potentially, distributed

entities.

 The concepts in the ROAD meta-model have been implemented in a programming

framework which can be extended by the application programmer to create adaptive

applications. Central to this framework are dynamic contracts. These contracts define the

role structure, control interactions between the role instances, and measure the performance

of those interactions. Adaptivity is achieved by monitoring and manipulating these

contracts, along with the role-player bindings. Contracts have been implemented using the

mechanism of “association aspects”.

 The applicability of the ROAD framework to the domain of Service-Oriented

Computing is demonstrated. The framework is further evaluated in terms of its ability to

express the concept of ontogenic adaptation and also in terms of the overhead its runtime

infrastructure imposes on interactions.

Declaration

This is to certify that this thesis contains no material which has been accepted for the

award of any other degree or diploma and that to the best of my knowledge this thesis

contains no material previously published or written by another person except where

due reference is made in the text of the thesis. Where the work is based on joint

research or publications, I have disclosed the relative contributions of the respective

workers or authors.

Alan Colman
October 2006
Melbourne

Acknowledgements

My sincere thanks go to my supervisor Professor Jun Han, who agreed to take on a

foundling PhD candidate who had some strange ideas on applying systems theory to

software architecture. Thank you Jun for the many hours spent discussing the topic, for

your guidance and for your assiduous reviewing of papers and drafts. My warm thanks

also to my fellow research student, Linh Duy Pham. Many of the detailed decisions on

the ROAD framework implementation were a collaborative result of discussions

between Linh and myself. Linh also needs to be credited with taking over much of the

coding of the ROAD framework, and for writing the test code.

 My thanks to my initial supervisor, Dr Lorraine Johnston, who agreed to support

my candidature and, prior to her retirement, gave me the freedom to explore domains of

research that weren’t necessarily her own. My thanks also to Professor Ryszard

Kowalczyk for agreeing to act as associate supervisor.

 Thanks to the members of the Component Software and Enterprise Systems

research group at Swinburne, in particular Dr. Yan Jin, Antony Tang and Dr Jean-Guy

Schneider for their feedback on my presentations. I also thank Assoc. Professor

Phillipe Collet for his comments and clarifications on the ConFract framework.

Acknowledgement is also due to the many anonymous reviewers of my conference and

journal papers on which this thesis was based, and whose comments helped hone this

work.

 This project would not have been possible without the scholarships provided by

the Australian and Victorian governments, and Swinburne University of Technology. I

would also like to acknowledge the contribution of Microsoft Research (Europe) and

the American Association of Artificial Intelligence in providing travel scholarships that

enabled me to attend conferences.

 Finally, I would like to express my profound gratitude to my wife Katherine

Westfold, without whom this project would never have started. Thank you, Kathy, for

your support; for the many hours pent sproofing rafts; and for finally convincing me to

use semi-colons.

Contents

Abstract ..i

Declaration ..ii

Acknowledgements ..iii

Contents..iv

List of Figures ..viii

List of Tables...x

List of Publications ..xi

Part I Adaptation and Organisation ...xi

1 Introduction...2
1.1. Adaptive software in an uncertain world...2
1.2. Research problem – an architecture for adaptive software...3
1.3. An organisational approach to adaptive software ..5
1.4. Thesis outline...6

2 Adaptive Organisations ..11
2.1. Adaptation ...12

2.1.1. Evolutionary adaptation (reproduction)..13
2.1.2. Ontogenic adaptation (self-production) ..14
2.1.3. Environmental manipulation (production)..15

2.2. Organisations ..15
2.2.1. Ontogenically adaptive systems..15
2.2.2. Organisation as metric, process, structure and system invariant...............................16
2.2.3. System-theoretic approaches to adaptation and organisation17
2.2.4. The Viable System Model – an example of combining control and structure in a
goal-driven system..20

2.3. Role-based organisations ..23
2.3.1. Organisational structures ..24
2.3.2. Management of flexible role-based structures ..25

2.4. Summary - a taxonomy of adaptation in systems...26

3 Adaptive Software Architectures...29
3.1. Requirements for ontogenic adaptation in software architectures................................31
3.2. Approaches to representing adaptive architectures ..32

3.2.1. Structure-centric descriptions ...33
3.2.2. Quality-centric descriptions..35

3.3. Distinguishing characteristics of adaptive frameworks ..36
3.4. Existing surveys and selection of literature...39
3.5. Structure-centric frameworks ..43

3.5.1. Darwin based frameworks – using constraints ...43

 v

3.5.2. Plastik - using pre-defined configuration actions and constraints 46
3.5.3. ArchJava – creating predefined configurations .. 47

3.6. Control-oriented frameworks – taking non-functional requirements into account 48
3.6.1. Rainbow ... 48
3.6.2. Self-management modules ... 50
3.6.3. Rainbow variant (Huang et al.)... 52
3.6.4. Aura - task based self-adaptation.. 54
3.6.5. Viable System Architecture.. 56

3.7. Contract-oriented frameworks .. 57
3.7.1. ConFract – contracts for controlling composition and behaviour............................. 58
3.7.2. CASA – configuration selection based on application contracts.............................. 61

3.8. Summary of framework characteristics... 63

Part II The ROAD Meta-model .. 67

4 Role-Oriented Adaptive Design... 68
4.1. Basic ROAD concepts ... 68
4.2. Expository example ... 71

5 Roles and Players.. 76
5.1. Roles as design and implementation entities... 77
5.2. Two perspectives on roles – player and organisation... 78
5.3. The properties of roles and players in adaptable organisations................................... 82
5.4. Levels of player autonomy... 85

5.4.1. Players with no autonomy .. 87
5.4.2. Players with process autonomy .. 88
5.4.3. System-state autonomy... 89
5.4.4. Players with intentional autonomy ... 90
5.4.5. Players with constraint autonomy... 91
5.4.6. Capabilities required of players with different levels of autonomy.......................... 92

5.5. The separation of organisational structure from process ... 93
5.6. The preservation of state ... 95

5.6.1. Communication state .. 95
5.6.2. Domain state... 96

5.7. Summary.. 97

6 Contracts between Roles .. 99
6.1. Software contracts... 100
6.2. The attributes of ROAD contracts ... 101
6.3. Contract abstraction ... 105
6.4. Abstract contracts at the performative level ... 107

6.4.1. Expressing authority using abstract message types .. 107
6.4.2. Contract transactions as CCA sequences.. 109
6.4.3. Using CCAs to define performance measurement points....................................... 111

6.5. Concrete contracts .. 114
6.6. ROAD contracts and role-player bindings.. 116
6.7. Summary.. 117

7 Self-managed Composites and the Management System .. 119

7.1. The structure of self-managed composites ..120
7.2. Organisers ...122

7.2.1. Organiser roles..123
7.2.2. Organiser players ..124
7.2.3. Adaptive behaviour within a composite..126

7.3. The management system..127
7.3.1. Adaptive behaviour across composites ..128

7.4. Summary..131

Part III The ROAD Framework and Discussion ...135

8 Framework Implementation ..136
8.1. A framework-based implementation..137
8.2. Roles ..139

8.2.1. Roles as abstract function. ..139
8.2.2. Roles as message routers ..141
8.2.3. Message queuing in roles..142
8.2.4. Role-player adaptors...143
8.2.5. The role life-cycle...143

8.3. Contracts ...144
8.3.1. Creating contract instances using association-aspects ..146
8.3.2. The contract hierarchy ..148
8.3.3. Creating and revoking contract instances ...154
8.3.4. Limitation of using association aspects ..155

8.4. Self-managed composites and organisers ...155
8.5. State of framework implementation and further work ...156
8.6. Towards tool support for developing organisational structures158
8.7. Summary..161

9 A Test Application ..163
9.1. Overview of the test application ..164
9.2. Composite construction and controlling communication ..165

9.2.1. Creating the composite, roles and players ..165
9.2.2. Adding roles to composite and binding players..166
9.2.3. Preventing unauthorised communication..168
9.2.4. Creating contracts ...168

9.3. Adaptive behaviour..169
9.4. Heterogeneous players ..171
9.5. Summary..172

10 A Design Case Study in Service Oriented Computing..173
10.1. Context and system requirements ..174
10.2. High-level ROAD-based design...176

10.2.1. Single library..176
10.2.2. Multiple libraries..178

10.3. Decomposition of composites ..179
10.3.1. Responsibilities of the Acquisitions Department ...180
10.3.2. Responsibilities of the Book Broker ..181

10.4. Contracts ...182
10.4.1. Abstract performative contracts ...182

 vii

10.4.2. Concrete functional contracts .. 185
10.5. Composite management interfaces.. 186
10.6. Adaptive behaviour ... 188
10.7. Discussion - ROAD as application-specific middleware .. 189
10.8. Summary.. 192

11 Analysis and Discussion.. 194
11.1. Comparative expressiveness of the ROAD framework.. 195
11.2. Runtime overhead.. 203

11.2.1. Factors in overhead.. 203
11.2.2. ROAD tests.. 204
11.2.3. Results and discussion ... 205

11.3. Summary.. 207

12 Conclusion ... 209
12.1. Contribution .. 209
12.2. Future work... 212

Appendix ... 209

Author Index... 218

References ... 229

List of Figures

FIGURE 2-1: FEEDBACK CONTROL ..18
FIGURE 2-2: A MULTILEVEL “SYSTEM OF SYSTEMS” HIERARCHY ..19
FIGURE 2-3: SEPARATION OF CONTROL FROM PROCESS ...21
FIGURE 2-4: A SCHEMA OF A VIABLE SYSTEM..22
FIGURE 2-5: TWO DIMENSIONS OF INDIRECTION IN ADAPTIVE ROLE-BASED ORGANISATIONS..................24
FIGURE 2-6: TAXONOMY OF ADAPTATION IN SYSTEMS..26
FIGURE 3-1: REPRESENTING DYNAMIC ARCHITECTURES ...33
FIGURE 3-2: SELF-MANAGED COMPONENTS (FROM (GEORGIADIS ET AL., 2002))44
FIGURE 3-3: PLASTIK'S SYSTEM ARCHITECTURE (FROM (BATISTA ET AL., 2005))..................................46
FIGURE 3-4: RAINBOW FRAMEWORK (FROM (GARLAN ET AL., 2004A))...49
FIGURE 3-5: RAINBOW FRAMEWORK EXTENDED WITH MULTIPLE SELF-MANAGED MODULES

(SMS) (FROM (CHENG ET AL., 2004)) ..51
FIGURE 3-6: ARCHITECTURE FOR RUNTIME LOCAL ADAPTATION SUPPORT (FROM (HUANG AND

STEENKISTE, 2005))..53
FIGURE 3-7: THE AURA ARCHITECTURE FOR UBIQUITOUS COMPUTING (FROM (SOUSA AND

GARLAN, 2003)) ...55
FIGURE 3-8: SIMPLIFIED VIABLE SYSTEM MODEL DIAGRAM (FROM (HERRING AND KAPLAN,

2000)) ...56
FIGURE 3-9: ASPECTS OF CONTRACTS AND METHODS OF CONTROLLING INTERACTIONS.........................57
FIGURE 3-10: FRACTAL COMPONENT AND CONTRACTS (FROM (COLLET ET AL., 2005))59
FIGURE 3-11: ADAPTATION STEPS IN CASA FRAMEWORK (FROM (MUKHIJA AND GLINZ, 2005A))62
FIGURE 4-1: ROLES, CONTRACTS AND ORGANISERS FROM AN ORGANISATION LAYER SEPARATE

FROM PLAYERS..70
FIGURE 4-2: ORGANISATIONAL CHART OF WIDGET DEPARTMENT ..72
FIGURE 4-3: EXPLODED VIEW OF NESTED SELF-MANAGED COMPOSITES (NOT ALL ROLES AND

PLAYERS SHOWN)..73
FIGURE 5-1: PLAYER-CENTRIC AND ORGANISATION-CENTRIC PERSPECTIVES ON ROLES80
FIGURE 5-2 ORGANISATIONAL CHART WITH PLAYERS ..82
FIGURE 5-3: SHIFTING BOUNDARY BETWEEN ROLES AND PLAYERS ON AN INTENTIONAL

HIERARCHY ...85
FIGURE 5-4: ALTERNATIVE 1: SEPARATION BETWEEN ROLE AND PLAYER WHERE PLAYER HAS NO

AUTONOMY ...87
FIGURE 5-5: ALTERNATIVE 2: PLAYER AS EXECUTION CONTEXT AND SINGLE PROCESS88
FIGURE 5-6: A PLAYER WITH PROCESS AUTONOMY MUST BE ABLE TO TRANSLATE A SYSTEM-

STATE TO A PROCESS, THEN CREATE OR CHOOSE APPROPRIATE THE PROCESS GIVEN
CONSTRAINTS..89

FIGURE 5-7: A PLAYER WITH SYSTEM-STATE AUTONOMY MUST BE ABLE TO TRANSLATE A ROLE’S
PURPOSE INTO A SUITABLE SYSTEM-STATE, AND THEN INTO A PROCESS..............................90

FIGURE 5-8: ORGANISATION AND INDIVIDUAL PURPOSE MAY HAVE TO BE RESOLVED BY A PLAYER
WITH INTENTIONAL AUTONOMY (A FREE AGENT) ..91

FIGURE 5-9: ROLE AS MESSAGE ROUTER - PRINCIPLE OF BLIND COMMUNICATION OF PLAYERS.............95

 ix

FIGURE 5-10: ROLES AS MESSAGES BUFFERS .. 96
FIGURE 6-1: LIFE-CYCLE OF A CONTRACT SHOWING VARIOUS STATES.. 103
FIGURE 6-2: EXAMPLE OF A CONTRACT INSTANCE BETWEEN A FOREMAN AND A THINGYMAKER 104
FIGURE 6-3: ROAD CONTRACTS - BASIC CONCEPTS .. 104
FIGURE 6-4: FUNCTIONAL AND PERFORMATIVE ROLES ... 105
FIGURE 6-5: FUNCTIONAL AND PERFORMATIVE CONTRACTS... 106
FIGURE 6-6: DOMAIN SPECIFIC ABSTRACT ORGANISATION BOUND BY CONTRACTS............................... 107
FIGURE 6-7: VALID SYNCHRONOUS, ASYNCHRONOUS AND DEFERRED-SYNCHRONOUS CCA

SEQUENCES INITIATED WITH A SUPERVISOR DO CCA.. 111
FIGURE 6-8: CCA POINTS INTERCEPTED BY CONTRACT FOR MEASUREMENT OF TIME-BASED

PERFORMANCE VARY DEPENDING ON THE CONTRACT-TERM’S SYNCHRONISATION
TYPE (PLAYERS NOT SHOWN) .. 112

FIGURE 6-9: CHANGE OF DOMAIN-STATE MEASURED IN AN ASYNCHRONOUS TRANSACTION 113
FIGURE 6-10: INTERNAL ROAD CONTRACT MAPS TO EXTERNAL SLAS.. 117
FIGURE 7-1: CONCEPTUAL RELATIONSHIP BETWEEN FUNCTIONAL ROLES, PLAYERS, AND SELF-

MANAGED COMPOSITES .. 120
FIGURE 7-2: SELF-MANAGED COMPOSITES DELEGATES INCOMING MESSAGES TO ITS ROLES................. 121
FIGURE 7-3: EXAMPLE OF RECURSIVE STRUCTURE OF SELF-MANAGED COMPOSITES............................ 123
FIGURE 7-4: EXAMPLE OF A DECISION MAKING PROCESS OF AN ORGANISER ... 127
FIGURE 7-5: INTERACTIONS BETWEEN AN ORGANISER ROLE (WDO) AND THE ORGANISER OF

ENCLOSING COMPOSITE (MDO). (DETAIL FROM FIGURE 7-3 ON PAGE 132) 130
FIGURE 7-6: SUMMARY OF RELATIONSHIPS BETWEEN ROAD CONCEPTS.. 133
FIGURE 8-1: ORGANISATIONAL CODE BASED ON THE ROAD LIBRARY PACKAGE CAN BE WRITTEN

AS A SEPARATE CONCERN FROM THE FUNCTIONAL CODE .. 137
FIGURE 8-2: THE ROAD FRAMEWORK LIBRARY AND AN EXAMPLE DOMAIN-SPECIFIC

APPLICATION .. 138
FIGURE 8-3: RELATIONSHIP BETWEEN ROLE AND PLAYER INTERFACES... 140
FIGURE 8-4: ROLE RELATED ENTITIES ... 141
FIGURE 8-5: CONTRACT RELATED CLASSES .. 145
FIGURE 8-6: GLOSSARY OF ASPECTJ TERMS ... 146
FIGURE 8-7: SYNCHRONOUS TRANSACTION BETWEEN ROLES UNDER CONTRACTUAL CONTROL............ 151
FIGURE 8-8: COMPOSITES, ORGANISERS AND ASSOCIATED CLASSES... 155
FIGURE 8-9: INTERFACE DEPENDENCIES BETWEEN TWO COMMUNICATING COMPONENTS / OBJECTS..... 159
FIGURE 8-10: INTERFACE INTERDEPENDENCIES BETWEEN ROLES, PLAYERS AND CONTRACTS 159
FIGURE 9-1: TEST HARNESS CREATES INITIAL CONFIGURATION BASED ON WIDGET ORGANISATION

PACKAGE AND SIMULATES FUNCTIONAL LOAD VIA PRODUCTION MANAGER 164
FIGURE 9-2: OVERVIEW OF THE MAIN CLASSES OF THE APPLICATION USED BY THE TEST HARNESS 165
FIGURE 9-3: INITIAL CONFIGURATION WIDGETDEPCOMPOSITE INSTANCE ... 167
FIGURE 9-4: THE CONFIGURATION OF WIDGETDEPCOMPOSITE IS CHANGED DYNAMICALLY. THE

FOREMAN PLAYER TAKES ON THE THINGYMAKER ROLE. ... 170
FIGURE 9-5: RE-CONFIGURATION OF THE ROLE STRUCTURE – ANOTHER THINGYMAKER ROLE IS

CREATED... 170
FIGURE 9-6: USING A WEB SERVICE PLAYER... 171

FIGURE 10-1: LIBRARY BOOK BROKER VIRTUAL ENTERPRISE – EXAMPLE INSTANTIATION WITHIN
A SINGLE LIBRARY COMPOSITE..177

FIGURE 10-2: INDEPENDENT BROKING SERVICE INSTANCE WITH MULTIPLE LIBRARY CLIENTS.............178
FIGURE 10-3: THE CLIENT-BROKER RELATIONSHIP GENERALISED AS A BUYER-SELLER CONTRACT183
FIGURE 10-4: BUYER-SELLER PERFORMATIVE CONTRACT ...184
FIGURE 10-5: INFORMATION PEER-PEER PERFORMATIVE CONTRACT ...185
FIGURE 10-6: BOOKBUYER-SELLER CONCRETE CONTRACT ...185
FIGURE 10-7: SUPPLIER-RECEIVER CONCRETE CONTRACT ...186
FIGURE 10-8: NON-FUNCTIONAL REQUIREMENT AND THE MEASUREMENT OF THEIR PERFORMANCE.....187
FIGURE 10-9: CONVENTIONAL MIDDLEWARE ...190
FIGURE 10-10: SCHEMA SERVICE COMPOSITE AS APPLICATION-SPECIFIC MIDDLEWARE........................191
FIGURE 11-1: MEAN DURATION PER TRANSACTION (MSEC) FOR DIFFERENT CONFIGURATIONS OF

ROAD AND WEB SERVICE MIDDLEWARE ...207

List of Tables

TABLE 3-1: SUMMARY OF THE CHARACTERISTICS OF ADAPTIVE SOFTWARE FRAMEWORKS65
TABLE 5-1: LEVEL OF CAPABILITY NEEDED FOR PLAYERS WITH DIFFERENT LEVEL OF AUTONOMY.........92
TABLE 6-1: EXAMPLE SET OF ABSTRACT MESSAGE TYPES REPRESENTED BY CCA PRIMITIVES.............108
TABLE 6-2: EXAMPLE FORM OF AN ABSTRACT PERFORMATIVE CONTRACT ...110
TABLE 10-1: INHERITANCE FROM COMMON PERFORMATIVE CONTRACTS...183
TABLE 10-2: EXAMPLES OF THE EVALUATION OF NON-FUNCTIONAL REQUIREMENTS188
TABLE 11-1: SUMMARY OF THE CHARACTERISTICS OF ADAPTIVE SOFTWARE FRAMEWORKS201
TABLE 11-2: MEAN TIME IN MILLISECONDS AND RELATIVE DURATION TO PERFORM A STANDARD

TRANSACTION FOR EACH MIDDLEWARE CONFIGURATION ...205

 xi

List of Publications

This thesis is largely based on the following peer-reviewed articles for which I am the
primary author.

Journal Articles:

Colman, A. and Han, J. (to appear) 'Using Role-based Coordination to Achieve
Software Adaptability', Science of Computer Programming, Elsevier.

Colman, A. and Han, J. (2006) 'Adaptive service-oriented systems: an organisational
approach', International Journal of Computer Systems Science &
Engineering, vol. 21, no. 4, CRL, pp.235-246.

 Colman, A. and Han, J. (2006), "Using Associations Aspects to Implement
Organisational Contracts," Electronic Notes on Theoretical Computer
Science, vol. 150, no. 3, Elsevier, pp37-53.

Conference and Workshop Papers:

Colman, A., Pham, L.D., Han, J., and Schneider, J.-G. (forthcoming 2006) “Adaptive
Application-Specific Middleware,” In Proceedings of the Middleware for
Service Oriented Computing Workshop (MW4SOC 2006) Melbourne,
Australia, ACM.

Colman, A. and Han, J., (2005) "An organisational approach to building adaptive
service-oriented systems," Proceedings of First International Workshop on
Engineering Service Compositions,WESC'05, in IBM Research Report
RC23821, Amsterdam, The Netherlands. (An extended version can be found
in the CSSE paper listed above)

Colman, A. and Han, J., (2005) "Organizational Roles and Players," Proceedings of the
AAAI Fall Symposium, Roles, an interdisciplinary perspective, Arlington,
Virginia. (Selected for extension and potential inclusion in the journal:
Applied Ontology)

Colman, A. and Han, J., (2005) "Using Associations Aspects to Implement
Organisational Contracts," Proceedings of the 1st International Workshop on
Coordination and Organisation (CoOrg 2005), Namur, Belgium. (An
extended version can be found in the ENTCS paper listed above)

Colman, A. and Han, J., (2005) "Coordination Systems in Role-based Adaptive
Software," Proceedings of the 7th International Conference on Coordination
Models and Languages (COORD 2005), LNCS 3454, Namur, Belgium.
(Selected for extension and inclusion in the journal: Science of Computer
Programming)

Colman, A. and Han, J., (2005) "On the autonomy of software entities and modes of
organisation," Proceedings of the 1st International Workshop on
Coordination and Organisation (CoOrg 2005) , Namur, Belgium.

Colman, A. and Han, J., (2005) "Operational management contracts for adaptive
software organisation," Proceedings of the Australian Software Engineering
Conference (ASWEC 2005), Brisbane, Australia.

Colman, A. and Han, J., (2005) "Organizational abstractions for adaptive systems,"
Proceedings of the 38th Hawaii International Conference of System Sciences,
Hawaii, USA.

Part I

Adaptation and
Organisation

1

Introduction

Software systems are becoming inexorably more open, distributed, pervasive, mobile

and connected. This accelerating trend is being driven by new technologies that take

advantage of the rapidly increasing power and falling cost of hardware and networking.

Such systems have to interact with other systems and within environments that are

becoming increasingly heterogeneous and dynamic. This thesis addresses the problem

of how to build adaptive software systems that can reliably achieve system-level goals

in environments that are volatile, where the system itself may be built from components

of uncertain behaviour, and where the requirements for the software system may be

changing. In this chapter we introduce this research problem and its context, and

outline our approach to addressing it.

1.1. Adaptive software in an uncertain world
Software systems exist in multi-faceted environments. These environments include the

computational and network infrastructure and the resources provided by those

infrastructures. They also include aspects of the real world with which the

computerised system interacts either by providing or consuming services, or as a

controller. There are many sources of change and perturbation in these environments to

which a software system may need to adapt. Distributed software systems rely on

networks that may have unreliable bandwidth or availability. Mobile systems may have

variable access to resources. Heterogeneous systems may need to adapt to new

components that use various technologies. Composed software systems are often

aggregations of services or black-box components that may be of uncertain behaviour

or reliability. Inter-organisational systems may use components that are not directly

controlled or owned by the composite system. In open software systems, there may be

Chapter 1 Introduction 3

a need to interact with other systems or agents that exhibit a degree of autonomy from

the composed system.

 The increasing pervasiveness and integration of software systems within the

physical world means that such systems also need to cope with changing requirements.

Whether they are personalised software devices, sensing or control systems, or

information systems that mirror real-world processes, such software systems often need

to cope with changes in user requirements or preferences, changes in the context of use,

or changes in the demands of the operating context.

 Many types of software system are, therefore, having to cope with simultaneous

changes in both requirements and environments, and having to balance both these types

of change. For example, in the domain of pervasive mobile computing a user may want

to change the device they use (PDA, mobile etc) as they move to a different location.

The application may also need to respond to various types of user with different

preferences or permissions; or to different personas of the same user; or to a user with

changing goals or requirements. Consider a scenario where a user wants to download a

picture on to their PDA from a server over the Internet. The user will have certain pre-

ferences that need balancing (e.g. speed of download, quality of picture). The PDA also

has a display of limited resolution. The bandwidth and server capacity may also be

variable. The application responsible for delivering the picture may therefore have to

restructure itself by adding a picture compression component to better suit the user’s

need, the device’s capabilities and the bandwidth available.

 Given uncertain computing environments such as those described in the above

scenario, traditional software development paradigms, that assume static computational

environments in a fixed context of use, are inadequate. What is needed is adaptive

software that can take account of changing requirements and contexts, and respond

accordingly.

1.2. Research problem – an architecture for adaptive
software

The aim of this research is to develop an architectural meta-model and framework for

the construction of software applications that will be adaptive to both changing

requirements and environments. Emmerich (Emmerich, 2000) suggests that distributed

architectures need to possess a number of properties. These include scalability,

openness, heterogeneity, resource sharing and fault tolerance. In distributed systems, it

is often considered desirable that such non-functional properties be transparent to the

application programmer (for example, middleware could perform load balancing to

4 PART I Adaptation and Organisation

achieve performance transparency). In adaptive systems, on the other hand, non-

functional properties may need to be explicitly managed and traded-off against each

other. In order to effectively implement adaptive distributed applications, we contend

there are a number of other properties that are desirable in adaptive system

architectures.

• Grounded. The architecture needs to be able to take account of the ‘real-world’.

It needs to represent more than just logical relationships between or within

abstract computational entities. Software entities and their relationships are

always situated in a context which determines many of their non-functional

attributes: for example, performance, reliability, security, and so on. Adaptive

software needs to be able to take account of (if not model) this situated context

by sensing changes, evaluating the effect of those changes and acting on those

changes.

• Exogenous. The architecture cannot assume it has access to the internal

configuration or state of the components that make up the system. Coordination

of the behaviour, or measurement of non-functional properties, of the

components must be external or exogenous to those components. An exogenous

management structure also maintains a separation of management and functional

concerns.

• Self-managed. It is commonly accepted that parts of a complex system should be

able to be independently described, implemented and deployed in modules

(Simon, 1969). The complexity of managing the relationships between entities in

a system increases dramatically as the number of heterogeneous entities increase.

In order to handle this complexity, management of the system also needs to be

distributed down to the level of modules rather than globally managed. In other

words, these modular composites should be self-managed, as much as possible.

• Recursive. If descriptions of the system at different levels of granularity and

abstraction are based on the same architectural meta-model, this increases the

efficacy of that meta-model and greatly increases the comprehensibility of the

design. For example, one of the strengths of object-oriented methodologies is that

objects are composed of other objects which are made of other objects, and so on.

Units of architectural description should be able to be applied at different levels

of granularity.

• Practical. The concepts in the architectural meta-model should be as simple as

possible (and no more). One of the advantages of the object-oriented

methodology is that it is based on a few powerful concepts (encapsulation,

Chapter 1 Introduction 5

inheritance, polymorphism, etc.) that can be realised in a relatively simple meta-

model (class, object, method, etc.). Likewise, an adaptive architectural model

should ideally be based on a few powerful concepts that software developers can

readily comprehend and apply. The architecture also needs to be able to be

supported by frameworks or tools that make it practical to implement industrial

scale systems.

Any adaptive architecture will, of course, need management mechanisms for sensing

change and adapting to that change. The thesis presents an adaptive software

architecture, in the form of a meta-model and an application framework, which has the

above properties.

1.3. An organisational approach to adaptive software
One basic approach to building runtime adaptive systems is to construct them of

loosely coupled elements. These elements are dynamically coordinated and

reconfigured to meet environmental demands or changing goals. This underlying

approach is common to autonomic computing, agent systems and dynamic

architectures, and is the approach adopted in this thesis.

 This thesis presents a meta-model and framework called Role Oriented Adaptive

Design (ROAD). The ROAD meta-model is based on the biological concept of

ontogenic adaptation. Ontogenically adaptable systems can regulate and restructure

themselves while maintaining their organisational integrity. We have taken a system-

theoretic approach to developing such systems based on a number of principles. These

principles are the separation of control from process (as in a control system), the

distribution of control down through a recursive structure, and the radical separation of

abstract function (a role) from the implementation of that function (a player). Rather

than being monolithic constructions, ROAD software applications are dynamic

compositions of distributed, loosely-coupled entities that operate in changing contexts.

In this sense they resemble complex human organisations or biological systems, more

than they resemble simple deterministic machines.

 The ROAD meta-model reflects this organisational approach. The key concepts

and characteristics of this meta-model are as follows:

• Software applications are viewed as goal-oriented organisations that attempt to

remain viable in changing environments.

• The structure of software organisations comprises a network of functional roles

associated by contracts. This structure is a runtime entity rather than just a

design-time construct.

6 PART I Adaptation and Organisation

• Roles define a purposeful function (fulfil a goal) with respect to the organisation

as a whole.

• There is a strict separation of abstract function (role) and process (players). Roles

are executed by players (components, services, agents, people, or composite

organisations).

• Organisational structures are flexible because the relationships between roles

(contracts), and the relationships between roles and their players, can be changed

at run-time.

• These flexible organisational role-structures are encapsulated in a composite that

is managed by its own organiser. Management includes both (re)configuration

and regulation of the composite.

• Because self-managed composites are themselves role players, these composites

can be distributed and recursively composed.

• Management is ultimately the management of relationships. Non-functional

properties can always be viewed as properties of functional relationships

(properties of an entity are always properties with respect to some other entity /

organisation). In ROAD, therefore, these properties are always defined in, and

measured by, contracts.

The concepts in the ROAD meta-model have been expressed in a programming

framework which can be extended by the application programmer to create adaptive

applications.

1.4. Thesis outline
This thesis is divided into three parts. Part I is a general discussion of the concepts of

adaptation and organisation that underlie the ROAD meta-model (Chapter 2), and a

review of the literature of adaptive architectures in terms of these concepts (Chapter 3).

Part II describes the Role-Oriented Adaptive Design meta-model. Chapter 4 of Part II

provides an overview of the meta-model and an expository example. The remaining

chapters in Part II describe the concepts in the meta-model in detail: role and players

(Chapter 5); contracts (Chapter 6); and self-managed composites, organisers and the

management system (Chapter 7). Part III consists of a description of an

implementation of the ROAD framework (Chapter 8), a test application built on that

framework (Chapter 9), a design case study in the domain of service-oriented

computing (Chapter 10), a discussion of the expressiveness of the ROAD meta-model

and the efficiency of the framework (Chapter 11), and a conclusion that discusses the

contribution of the thesis and points to future work (Chapter 12).

Chapter 1 Introduction 7

 Chapter 2 is a discussion of the system-theoretic concepts underpinning ROAD.

This approach is system-theoretic, in that we are concerned with how software systems

as a whole adapt to changes and maintain their viability in their environments, rather

than solely focussing on particular adaptive mechanisms or strategies. We define what

we mean by adaptation. The focus of this thesis is ontogenic adaptation in designed

systems. Such systems have three properties: Plastic structure, replaceable elements,

and regulatory/managerial mechanisms. We then discuss the concept of organisation

which is central to understanding ontogenic adaptation, then review key literature on

Cybernetics and General Systems Theory to elucidate the related concepts of control,

regulation and hierarchy. From these system-theoretic approaches two principles are

drawn. The first principle is the separation of control from process. The second is the

distribution of control down through a recursive structure. Our approach follows an

additional third principle: the radical separation of role (abstract function) from the

implementation of that function. We then use these concepts to define a taxonomy of

adaptive systems. This taxonomy shows how the type of adaptive software discussed in

this thesis fits within the broader context of adaptive systems.

 Chapter 3 applies the concept of ontogenic adaptation, as discussed in Chapter 2,

to software systems, and reviews the literature on adaptive software architectures in

terms of this concept. We set out what properties a software system would require for it

to be considered ontogenically adaptive in terms of the broad categories of

reconfiguration, regulation and management. The existing literature on adaptive

architectures is then examined. In order to analyse this literature, we identify a number

of distinguishing characteristics of adaptive architectures. After setting the scope of the

review and briefly discussing related areas of research not covered, a number of

adaptive architectural frameworks are reviewed in more depth, categorising them

according to the distinguishing characteristics identified earlier. The chapter concludes

by presenting a comparative table that summarises the characteristics of the reviewed

frameworks.

 Chapter 4 begins Part II of the thesis by discussing the major concepts of the

ROAD meta-model, and relating these concepts back to the general properties found, to

a greater or lesser extent, in adaptive architectures. The main ROAD concepts are roles,

players, contracts, organisers and self-managed composites. We then introduce an

expository example that will be used to illustrate these concepts in the subsequent

chapters of Part II.

 Chapter 5 discusses the characteristics of ROAD organisational roles and players,

and contrasts ROAD roles with other views of roles found in the literature on software

8 PART I Adaptation and Organisation

design. In ROAD’s meta-model, functional roles are runtime entities representing

“positions” in an organisational structure. In an organisation, roles have an independent

identity and existence from the players who are assigned to them. The radical

separation of roles from players raises a number of issues that are addressed. These

issues include support for heterogeneous players (objects, agents, services, user

interfaces etc.) and players with various levels of autonomy and capability, message

queuing and routing in a role structure, and the maintenance of domain state during

reconfiguration. In a ROAD application, roles are stateful interfaces that preserve

communication states if they have no player attached. Role-players of various

capabilities (including humans in some circumstances) can be dynamically assigned to

roles as the demands on the system change, or as the environment in which the system

operates changes.

 Chapter 6 examines contracts between roles. In ROAD, contracts are used not

only to compose and control associations between roles, but are also used to make role-

players ‘accountable’ for their performance. In other words, ROAD contracts not only

define functional relationships, but also define the non-functional properties of those

relationships both in terms of requirements (obligations of the parties) and a state-of-

fulfilment of those obligations (performance). Such contracts are a way of monitoring

and controlling the associations between entities that are loosely coupled. They specify

the required performance, and monitor and store actual performance of a role-player

with respect to the organisation. In Chapter 6 we also show how patterns of interaction

in a contract can be abstracted into, what we call, performative contracts that represent

the authority relationships between two roles. Performance measurement points that

correspond to various synchronisation approaches are also defined at this abstract

performative level.

 Chapter 7 discusses how self-managed composites can be created from roles,

players, contracts and organisers. We begin by describing the properties of these

composites. Issues of message delegation, player containment and whether or not

composites perform any domain process or maintain state are also discussed. We then

describe the function of the composite organiser who is responsible for managing the

composite. The functions of an organiser role are distinguished from that of an

organiser player. Organiser roles define how to change the composite, while organiser

players decide what to change. An example of an organiser-player strategy for

adaptation within a self-managed composite is described. The focus of the chapter then

turns to the management system which connects the organisers across composites. This

management system is distinct from the functional system comprising functional roles

Chapter 1 Introduction 9

and players. Adaptive behaviour across composites is described including the

propagation of non-functional requirements and performance information. The

conclusion to the chapter includes a summary model of all the main ROAD concepts

presented in Part II of the thesis.

 Chapter 8, the first chapter in Part III of the thesis describes an implementation of

the ROAD meta-model in the form of a framework that can be extended by the

application programmer. We then give an overview of how the concepts, described in

the previous part of the thesis, map to key abstract classes in the framework. The

subsequent sections describe in more detail the Java implementation of these key

ROAD concepts; namely, roles, contracts, self-managed composites and organisers. In

particular, we focus on a novel use of instantiable aspects called “association-aspects”

to implement contracts at the performative and functional levels. The chapter concludes

with a discussion of the work that could be done to further develop the ROAD

framework, and what tool support is needed by developers to make practical the

development of adaptive software organisations.

 Chapter 9 describes the implementation of a test application based on the ROAD

framework. The application demonstrates the various capabilities of the ROAD

framework, shows how the composite is created using roles, players and contracts, and

shows how the framework prevents unauthorised communication. The application also

demonstrates the adaptive behaviour that the ROAD framework facilitates by showing

how the organiser attempts to mitigate underperformance by reconfiguring the

composite. The chapter concludes by showing how a ROAD application can work with

heterogeneous players – in this case Java objects and Web services.

 Chapter 10 presents a case study that highlights the way ROAD can be used to

create Web service compositions, in particular the mediation between changing

requirements and the changing provision of services. A number of other modelling

capabilities of ROAD are also demonstrated including types of abstract performative

contract suitable to inter-organisational contracts (e.g. buyer-seller contracts as distinct

from intra-organisational contracts such as supervisor-subordinate, peer-peer, etc.); the

use of contracts which govern ‘long-lived’ transactions; the ability to represent ‘virtual

enterprises’; and the representation of performance in terms of non-temporal utility.

The case study also illustrates the design of composites so that role abstractions in a

composite are always kept at the one level of abstraction. Roles are not decomposed

into other roles within a composite. Rather, roles are always played by loosely coupled

players, some of which may be role composites. Highly adaptive systems can thus be

10 PART I Adaptation and Organisation

created, because the decomposition (not just the configuration) can always be changed

at runtime.

 Chapter 11 evaluates the expressiveness of the ROAD meta-model and the

performance of the ROAD framework. We first evaluate how well the ROAD meta-

model expresses those qualities necessary in an ontogenically adaptive software system

as set out in Chapter 3. The chapter then analyses the prototype implementation of the

ROAD framework in terms of the runtime overhead it imposes. ROAD defines an

organisational middleware structure through which passes all communication between

the application’s functional runtime entities. This interposed message-intercepting

structure creates an overhead compared to, say, the communication between two

directly communicating objects. The run-time performance overhead of a ROAD

application therefore needs to be characterised relative to such direct communication.

We also compare the overhead imposed by ROAD middleware to the overhead

imposed by the predominant middleware for more open inter-organisational application

integration, namely Web services.

 Chapter 12 concludes the thesis with a discussion of its contributions to the field of

adaptive software architectures, and then outlines the future work that could be done to

further develop the ROAD approach to developing ontogenically adaptive software.

 The reader may note that there is no chapter called “Literature Review” in this

thesis. This is due to the breadth of the topic of the thesis and its eclectic genesis. The

thesis draws from literature on systems theory, adaptive software architectures, roles,

and contracts, as well as research on aspect-oriented programming. Although the major

review of literature is the review of adaptive software architectures in Chapter 3,

discussion of other literature related to the various concepts and technologies can be

found in the relevant chapters.

2

Adaptive Organisations

This chapter discusses the concepts that underpin the ROAD (Role Oriented Adaptive

Design) approach to developing adaptive software systems. This approach is system-

theoretic, in that we are concerned with how software systems as a whole adapt to

changes and maintain their viability in their environments, rather than solely focussing

on particular adaptive mechanisms or strategies. The discussion in this chapter focuses

on adaptive systems in general, and provides a context for the literature review of

adaptive software systems in Chapter 3.

 The first section defines what we mean by adaptation. We adopt, from biology,

the distinction between three fundamental types of adaptation, namely: evolutionary,

ontogenic and environmental manipulation. The focus of this thesis is ontogenic

adaptation, and we extend this concept to designed goal-oriented systems.

 Section 2.2 of this chapter focuses on the concept of organisation which is central

to understanding ontogenic adaptation in living and artificial systems. We define what

we mean by organisation highlighting the difference between emergent natural systems

and goal-directed designed systems. We then examine some of the key system-theoretic

literature to eludicate the concepts of control and structure in organisations. In

particular, Beer’s Viable System Model (VSM) (Beer, 1984; Beer, 1985; Beer, 1979) is

discussed as a model that draws on these system-theoretic views of control and

structure. VSM presents a control-theoretic approach to recursively structured adaptive

systems. In particular, VSM differentiates various types of control. It also shows how

control can be related to organisational structure, and how structure can be used to

manage complexity.

12 PART I Adaptation and Organisation

 While we do not follow the VSM architecture in this thesis, it does illustrate two

important principles for designed goal-oriented adaptive systems. The first principle is

the separation of control from process. The second is the distribution of control down

through a recursive structure. In Section 2.3 we propose a third principle, and one not

found in VSM, namely the radical separation of role (abstract function) from the

implementation of that function. This provides a plastic flexible structure between

loosely-coupled elements that makes adaptation possible.

 These concepts are then used to define a taxonomy of adaptive systems in Section

2.4. This taxonomy is presented in order to show how the type of adaptive software we

discuss in this thesis fits within the broader context of adaptive systems.

2.1. Adaptation
Adaptation is a relationship between a system and its environment where change is

initiated to facilitate the survival of the system (or system type) in that environment.

This definition, however, does not illuminate a number of important aspects of

adaptation. To more fully characterise adaptation in a system the following questions

need to be answered.

• What is the goal of adaptation – is the goal just to ensure the survival of the

system within its environment, or does the system also have to meet first-order1

goals?

• What causes the need for change in the system – is it a change in the goals or

requirements of the system, or is the system responding to environmental

perturbation?

• What aspects/qualities/parts in the system are subject to change and what aspects

remain invariant?

• What are the limits to adaptation? Every system, living or designed, exists in an

environmental context and all adaptation is limited. Systems are not in

themselves adaptable – they are adaptable with respect to a set of environmental

states. Even systems that we regard as highly adaptive (such as humans) are only

viable within a limited range of environmental conditions (atmospheric

composition, temperature etc.) and within specific ecology.

• To what extent can a system cope with unanticipated changes to the environment

or its goals? In other words, do the requirements and environmental states to

1 Skyttner (2001p80) cites Deutsch’s hierarchy of goal-seeking. First order goal-seeking is related to
immediate satisfaction or reward; second order goal-seeking achieves first-order goals through self-
preservation; third order goal-seeking relates to the preservation of the group; and fourth order goal-
seeking preserves the environment or ecosystem. To be viable in the long-term, systems need to take
account of all these types of goal.

Chapter 2 Adaptive Organisations 13

which the system can adapt need to be defined when the system is reified, or can

the system dynamically adapt to unanticipated states provided certain limits or

constraints are not violated? Can the system change itself (structural adaptation

rather than just behavioural adaptation) to cope with unanticipated change?

• Can the system change the environment? In designed software systems we draw

a boundary between the system and the environment, and tend to assume the

environment cannot be changed. However, all systems effect their environment

to some degree. Adaptation expresses a relationship between a system and its

environment. For example, as human beings, it is our ability to modify our

environment that has made us so adaptable.

• Is the agency for adaptation internal or external to the system? Artificial systems

are often classified as adaptable (able to be modified by an external agent) and/or

adaptive (able to change itself).

In order to better build adaptive systems we need a more refined understanding of the

nature of adaptation. Biological systems have been a source of inspiration for the

development of adaptive software systems. In biological systems two mechanisms of

adaptation are commonly characterised (Maturana and Varela, 1980) — evolutionary

(phylogenetic) and ontogenic (or ontogenetic) adaptation. If we define adaptation as

the compatibility between a system and its environment we can add a third category —

environmental manipulation. Each of these mechanisms has parallels in designed

systems. These three mechanisms are based respectively on reproduction, self-

production and production.

2.1.1. Evolutionary adaptation (reproduction)
Evolutionary (phylogenetic) adaptation is a selective mechanism whereby instances of

a class of system reproduce themselves with variations. The variants that have a better

fit with their environment are selected because they can survive and reproduce.

Evolutionary adaptation is, therefore, the adaptation of a species (phylogeny) rather

than an individual of that species. In biological systems this variation is random (“blind

variation”) and environmental conditions determine selection. In software systems,

evolutionary adaptation has analogies at both design-time and runtime. At design time

the versions of a product throughout the software development life-cycle could be

regarded as variations. Unlike biological systems, these variations are not “blind”.

Versions of the software product-line are based on models the designers hold and

evolve in the iterative development cycle. Versions are tested to ensure they meet

requirements (i.e. they are well adapted to the nominal environment). On the other

hand, genetic algorithms (Holland, 1992) use blind variation and selection at runtime

14 PART I Adaptation and Organisation

to achieve this type of adaptation. Evolutionary adaptation is based on the reproduction

of individuals.

2.1.2. Ontogenic adaptation (self-production)
Ontogeny is the history of structural transformations of an individual system.

Ontogenic (or ontogenetic) adaptation is the ability of a system to regulate itself and

change its structure as it interacts with the environment. This change of structure is of

two types. The first is the change or interchange of the elements within the structure.

In biological systems an example of this type of change is the death and replacement of

cells. In software or hardware systems an analogy would be the replacement of one

component by another component, where both components share a common interface.

The second type of change is modification of relationships between the elements that

make up the system. In animals this plasticity of structure is achieved, in part, by the

nervous system. The nervous system (including the brain) enables and modulates the

interactions between various components of the living system by continually modifying

itself. This malleability of the nervous system (the individual self-structuring to fit the

environment) is the basis of cognition, learning and social behaviour (Maturana and

Varela, 1987).

 In biological systems, the plasticity of structure that enables ontogenic adaptation

has arisen through evolutionary adaptation. In software systems we must design this

plasticity (indirection) into the system. As with biological systems, there are two types

of indirection, firstly the ability to interchange elements that fulfil the same function

within the structure, and secondly the changing of the relationship between those

elements. In the context of software systems, we call these two types, respectively,

indirection of instantiation and indirection of association (Colman and Han, 2005).

 As well as having (at least some) loosely coupled elements, an ontogenically

adaptive system must have ways of determining at runtime that indirection (i.e.

deciding what the structure, and behaviour over that structure, will be), so that the

system maintains its viability. A viable system2 is one that can continue to survive (and,

if required, continue to meet its goals) in uncertain and changing environments.

Maintaining viability may involve the system learning either in a representational or

non-representational form. Neural networks are examples of systems that exhibit

ontogenic adaptation through non-representational learning. On the other hand, in the

2 Our use of the term viability derives from the Viable System Model of Stafford Beer (Beer, 1984) who
applied concepts of cybernetic control to human organisations.

Chapter 2 Adaptive Organisations 15

case of systems that hold a reflective representation of themselves, maintaining such

viability may be the responsibility of a management system.

 Ontogenic adaptation can be viewed as a form of self-production (autopoiesis3)

(Maturana and Varela, 1980) — the ability of the system to maintain its organisational

integrity even through the elements within it may change and the relationships between

those elements change.

2.1.3. Environmental manipulation (production)
There is a third type of adaptation – the ability to change the environmental constraints

to suit the system. This type of adaptation is also apparent in biological systems.

Biological examples include symbiosis; ant pheromone trails to food sources; the

creation of nests to moderate environmental perturbations; agriculture; and culture. In

software engineering the co-evolution of a system and its environment has long been

recognised. The design of software systems has been characterised as interactions

between “system designers” and “environmental designers” (Sykes, 2003). In software

systems, the boundary between system and environment is not just a technical issue.

Where this boundary lies, and whether or not the environment can be changed, is often

a negotiated socio-technical decision. As software systems are developed for more

complex and open software environments, the manipulation of environmental

constraints may become an important form of adaptation. An example of such

environmental alteration is the emergence of social norms in multi-agent societies

(Zambonelli, Jennings and Wooldridge, 2000). Adaptation through environmental

manipulation can be thought of as production.

2.2. Organisations
Adaptation through evolution, ontogenesis, and environmental manipulation are

complementary, and in many real world systems occur simultaneously. In this thesis we

will focus on ontogenic adaptation of software systems. In this section we examine the

relationship between organisation and ontogenic adaptation.

2.2.1. Ontogenically adaptive systems
. We can summarise the general properties of an ontogenically adaptive system as

follows:

• Flexibility (plasticity) of structure (indirection of association)

3 Maturana and Varela see the autopoiesis as the defining characteristic of living systems. The systems we
discuss in this thesis are, of course, not living. This is, in part, because they are not entirely self-producing.
Artificial systems have designers at some stage in their life-cycle. However, such artificial systems can still
have ontogenically adaptive properties.

16 PART I Adaptation and Organisation

• Replaceable elements (indirection of instantiation)

• Ability to ‘manage’ (regulate and reconfigure) the indirection in the system to

ensure its organisational integrity and thus its viability in its environment.

As pointed out above, it is the organisational integrity of an ontogenically adaptive

system that is invariant in dynamic situations, rather than the elements or structure of

the system. However, while the concept of indirection is clearly understood in the

context of software systems, applying the biologically inspired notions such as viability

and organisational integrity to software systems is a more problematic task. If we are

to build ontogenically adaptable software that can maintain, at runtime, its

organisational integrity, we will need to define what organisation is, how it might be

represented, and how the organisational structure might be manipulated to achieve

ontogenic adaptation.

 As software systems become more complex and operate in more open and

uncertain environments, we argue that it is necessary to model the dynamics of those

systems at a higher level of abstraction – at an organisational level rather than just a

structural, functional or process level. For example, biological science describes the

complex regulatory mechanisms that keep living organisms in a homeostatic

relationship with their environment (including other organisms). Similarly,

management theory has much to say about the design of organisational structures in

human organisations so that these organisations can thrive within their business

environments, and be more responsive to changing goals (e.g. (Mintzberg, 1983;

Simon, 1957)). In this work, we aim to show how software systems can be represented

at an organisational level of abstraction, so that we can start to reason about software

organisation and, thus, build viable ontogenically adaptive systems.

2.2.2. Organisation as metric, process, structure and system
invariant

A description of a system’s organisation is a description of the relationships between

elements in that system. There are many definitions of organisation. Parunak and

Brueckner (Parunak and Brueckner, 2003) suggest three aspects of organisation based

on information entropy, process, and (emergent) structure. Organisation1 (O1) is a

measurement of state; that is, the inverse to the amount of entropy in the system based

on some regularity — spatial, functional or temporal. O2 is a process in which O1

increases in time, in other words the process that decreases the amount of entropy

within the system. Finally, O3 is the structure resulting from O2 which can be measured

with O1.

Chapter 2 Adaptive Organisations 17

 This definition nicely binds the physical and informational aspects of organisation

together but it has two shortcomings. Firstly the measure of organisation (O1) is itself a

state-based metric. A more system-theoretic definition of organisation can be found in

Maturana and Varela (Maturana and Varela, 1980). In their definition, organisation is

the set of relationships that maintain the viability of a complex biological system in a

changing environment. In complex systems these associations can be seen as defining

the system. For example, in a complex multi-cellular system such as an animal, cells

are continually dying and being replaced. What stays constant in such biological

systems is the functional relationships between the roles played by these cells. It is

these relationships that define a system as a unity, and determine the dynamics of

interaction and transformations (the ontogenic adaptation) which the unity may

undergo (Maturana and Varela, 1987). Organisation is what maintains the system as a

viable entity in a changing environment.

 The second limitation, for our purposes, of the definition in (Parunak and

Brueckner, 2003) is that it only addresses emergent structures such as those in natural

systems. In terms of adaptation, natural systems only need to ensure their survival. On

the other hand, software systems need to survive but they also are designed to achieve

goals. The above definition, therefore, needs to be modified to take account of the

organisation’s purpose. The process (O2) can include activities to deliberately modify

the structure (O3) to achieve the system’s purpose. In the next sections we examine

system-theoretic approaches that account for such goal-orientation in adaptive systems.

2.2.3. System-theoretic approaches to adaptation and
organisation

To remain viable in their environment, adaptive systems need to have a goal of

achieving a stable state with their dynamic environment. Such homeostatic systems

dynamically self-regulate in order to maintain certain variables within acceptable

bounds (e.g. the human body regulates its processes in order to keep blood temperature

constant). Ashby (Ashby, 1956) expresses the interdependence in the dynamics of a

homeostatic system and its environment in his concept of ultrastability. Ultrastability is

the ability of a homeostatic system to change its internal organisation or structure in

response to external conditions. Such stability is achieved through control feedback

loops. The existence of such regulatory mechanisms is an essential feature of all

adaptive systems, and one of the fundamental concepts in cybernetics.

 Cybernetics is the attempt to develop a “science of control and communication, in

the animal and the machine” (Wiener, 1961). In this sense cybernetics is a

generalisation and extension of control theory. Key to the cybernetic view of control is

18 PART I Adaptation and Organisation

the separation of a controller from the process being controlled, as illustrated in Figure

2-3 below. The process interacts directly with the environment, while information on

the state of the environment and the process flows to the controller to form control

loops. These control loops can either be feedback or feed-forward. Feedback (or closed-

loop) control adjusts the process based on the measurement of some controlled variable

that is affected by the process in the environment. A simple feedback control loop is

illustrated in Figure 2-1 below (adapted from (Shaw, 1995)). The desired state of the

system (set point goal) is compared to the actual state, as measured by some control

variable. A manipulated variable is then altered to decrease the difference between the

desired and actual states. Changes to which a system must adapt are illustrated by block

arrows.

Figure 2-1: Feedback Control

 In feed-forward control, on the other hand, the controller must anticipate the

effects on the controlled variable resulting from changes to the manipulated variable,

given various environmental states. To do this the controller must maintain a dynamic

model of the controlled system in its environment. In general, a controller must be able

to respond appropriately to all possible states of the environment, that is the variety of

the environment. Ashby’s Law of Requisite Variety states that to regulate a system, the

controller must be capable of generating at least as much variety as that exhibited by

the system being regulated.

 Like cybernetics, General Systems Theory (GST) (Bertalanffy, 1968; Skyttner,

2001), attempts to distil general principles of biological and social systems. Such

systems are viewed as a “system of systems” with each subsystem performing a

function in the enclosing system. Living organisms have evolved from homeostatic

couplings of self-regulating systems that create composed systems at a higher level.

These systems in turn compose other systems of ever increasing complexity. Systems

theorists view this hierarchical composition as an essential feature of all complex

adaptive systems. A number of hierarchical system models have been developed (see

Skyttner, 2001) that attempt to extend the principles to complex man-made systems.

Controller
Process

Comparator
Set point

(goal) Output

Controlled
variable(s)

Input variables Environment
Manipulated

variable effector

sensor
Disturbance

Change of
goals

Affected
variables

Observed
variables

Chapter 2 Adaptive Organisations 19

These include the Viable System Model (Beer, 1985) that is discussed in the next

section.

Figure 2-2: A multilevel “system of systems” hierarchy

 Heylighen & Joslyn (2001) nicely summarise this hierarchy of systems from a

cybernetic perspective: “A control loop will reduce the variety of perturbations, but it

will in general not be able to eliminate all variation. Adding a control loop on top of the

original loop may eliminate the residual variety, but if that is not sufficient, another

hierarchical level may be needed. The required number of levels therefore depends on

the regulatory ability of the individual control loops: the weaker that ability, the more

hierarchy is needed. This is Aulin's law of requisite hierarchy”. A similar point has

been made by Herbert Simon in his study of human organisations (Simon, 1957);

namely, that hierarchy in artificial organisations compensates for the “limited

rationality” of the members of that organisation4. In his comparison of the natural and

artificial worlds Simon (Simon, 1969) sees quasi-autonomy from the outer environment

as an essential characteristic of complex systems. Complex systems are aggregations of

“stable intermediate forms”. Designed goal-oriented systems can also be viewed as a

hierarchy of control where successively lower levels of the system operationalise the

goals of the next higher level (e.g. a bureaucracy with various levels of management).

4 Agre (1995) notes that Simon (1957) outlined many ways in which social organisations compensate for
the "limited rationality" of their members. “The orchestration of numerous workers within a larger
organization, Simon argued, compensates for the individual's limited capacity for work. Likewise, the
division of labor and the assignment of specialized tasks to individuals compensates for their limited
abilities to learn new tasks. The flow of structured information through the organization compensates for
their limited knowledge, and the precise formats of that organization, together with the precise definition of
individual tasks, compensate for individuals' limited abilities to absorb information and apply it usefully in
making decisions. Finally, Simon believed that the hierarchical structure of bureaucracies compensates for
individuals' limited abilities to adopt their own values and goals.”

Levels of
abstraction and
control

Systems in
homeostasis
perform a
function(s) at a
higher level

20 PART I Adaptation and Organisation

In these goal-directed systems, control is distributed down through the structure to

quasi-autonomous subsystems.

 In living systems the boundaries of these “intermediate forms” are internally

determined (Maturana and Varela, 1980). The cell membrane is the archetypal example

of such a boundary. As we have already discussed in Section 2.1.3, in artificial systems

the boundaries of the system is often arbitrarily determined rather than internally

determined. However, even artificial organisations typically have a well defined

interface or ‘membrane’ which regulates its interactions with the environment.

2.2.4. The Viable System Model – an example of combining
control and structure in a goal-driven system

Other authors such as Beer (Beer, 1979; Beer, 1984), have applied cybernetic principles

to goal-driven business organisations and bureaucracies. Such intentionally designed

adaptive systems may need to adapt to changes in the goals of the system, as well as

adapting to changes in itself or its environment. To do this they need to regulate their

internal interactions and their interactions with their environment. Beer’s Viable

Systems Model (VSM) is a management theory but it has also been applied to many

forms of biological and social organisation. VSM combines the cybernetic concepts of

balancing variety, with a General Systems Theory (GST) “system of systems” approach

to creating a hierarchy of self-regulating “viable” systems.

 The strength of VSM is that it differentiates a number of types of management

control, and provides a consistent framework of how these types interact within and

between viable systems. All viable systems have “five necessary and sufficient

subsystems interactively involved in any organism or organisation that is capable of

maintaining its identity independently of other such organisms within a shared

environment.” (Beer, 1984). A viable system is separated into a System ONE5 and

Control Systems (TWO-FIVE) as illustrated in Figure 2-3 below. This distinction

between process and control is at the heart of Beer’s cybernetic approach to

organisation. In a viable system, the variety (complexity) of the control system and the

process, and the environment, must be kept in balance (homeostatic equilibrium)

through amplification and attenuation of complexity in order to preserve Ashby’s Law

of Requisite Variety.

5 Beer’s use of the word “System” is somewhat confusing here. CAPITAL letters are used to denote these
VSM systems. Only System ONE is a system in the sense of an independent entity. Systems TWO to FIVE
can be thought of as management subsystems that interact with each other, and with other subsystems of
the same type in other System ONEs. For example, the Planning and Adaptation subsystems (System
FOUR) in nested systems have connections to each other.

Chapter 2 Adaptive Organisations 21

Figure 2-3: Separation of Control from Process

 System ONE (S1) in VSM terminology is the process or sub-system being

controlled. This process enacts the primary function or purpose, and is itself a

composite of viable systems. The management systems that make up the controller are

as follows:

• System TWO (S2) – Regulation, coordination (e.g. production relations). S2

damps the oscillations between S1 and its environment.

• System THREE (S3) – Command, control (e.g. line management) and auditing

functions

• System FOUR (S4) – Adaptation, planning, strategy, simulation. To make the

system adaptive to non-routine change, S4 needs to be aware of the environment,

and dynamically adapt to unanticipated changes in the environment. To do this it

needs a model of the system and its environment

• System FIVE (S5) – Supervisory control that defines goals and policies for the

system, and gives identity to the system

These management sub-systems exemplify the hierarchy of control loops discussed in

the previous section. The relationship between these VSM systems is illustrated in

Figure 2-4 below. Figure 2-4 also illustrates that there may be more than one S1 (in the

diagram Systems 1A and 1B) which are coordinated hierarchically through S3. As well

as interconnected subsystems existing at the same level, all viable systems are

recursive; any viable system contains, and is contained in, a viable system.

Controller

Process

Environment

Systems 2-5

System 1

22 PART I Adaptation and Organisation

Figure 2-4: A Schema of a Viable System (adapted from Herring (2002))

 In summary, Beer’s Viable System Model combines the control-theoretic

perspective of cybernetics, with GST’s view of complex systems as a recursive

hierarchy of systems. VSM recognises the importance of different types of control in

viable systems, namely regulatory, operational, adaptive and supervisory control. These

nested control loops attempt to ensure that the system stays in a stable state in the face

of environmental perturbation and shifting goals. VSM requires the differentiation and

implementation of these various control mechanisms. The hierarchical nature of VSM

means that these control mechanisms are applied at all levels of the system. By

localising the management to the appropriate level, VSM provides a framework for

controlling complexity, by limiting the amount of variety with which any one controller

has to cope.

 However, creating an ontogenically adaptive system by separating control from

process (as in VSM), poses some challenges. Controllers must maintain a model of the

process (or at least those parts that need to be controlled and adapted). This model must

be valid and be kept updated. In a complex system, this self-model can add

considerable complexity to the system assuming a valid model can be defined at all6.

While cybernetics, GST and VSM in particular provide insights into the nature of

hierarchy and control in complex adaptive systems, the very generality of these

6 On the other hand, self-organising systems that evolve adaptive strategies through evolution (CAS
systems such as ant colonies) do not require a separation of control and process and do not have to
maintain explicit models. While this manages the demon of complexity, evolutionary adapted systems are
inherently brittle, do not have first-order goals, and are not amenable to supervisory control.

Regulatory
Centre (S2)

Environment

Fu
tu

re

P
re

se
nt

Operational
Control (S3) Audit (S3*)

1A

1B Control

Process

Direct I/O
Regulator

Planning and
Adaptation (S4)

Goals, Policy and
Supervision (S5)

Chapter 2 Adaptive Organisations 23

approaches is also their shortcoming7. There is little evidence they have had an impact,

as yet, on informing the design of real software systems although preliminary attempts

have been made in applying VSM to software design (Herring, 2002; Cai, Cangussu,

DeCarlo et al., 2004). Herring’s extension of VSM to software systems is discussed in

the next chapter. Although the VSM approach is a promising approach for creating

adaptive systems control and recursive composition, its quest for generality blurs a

fundamental distinction between naturally evolved and intentionally designed systems.

In designed systems we can radically separate the teleological function (role) of a

system from the implementation of the system.

2.3. Role-based organisations
In addition to the system-theoretic principles described above (namely, the separation

of process and control, and the distribution of control through a recursive structure) this

thesis introduces a third principle for goal-oriented ontogenically adaptive systems: the

separation of organisational roles from the players that execute those roles. A role

represents the abstract function8 of an entity within an enclosing system. In natural

systems this abstract function defines a teleonomical ‘purpose’ that is ascribed by the

observer (e.g. “the heart’s function is to circulate blood around the body”). In designed

systems, on the other hand, the function of the system/subsystem is a teleological

purpose that initially exists in the mind of the designer. The designer can envisage the

role of the system/subsystem without specifying how that system will be implemented.

This separation of abstract definition and implementation is commonplace in software

systems (e.g. interface of an object versus the implementation of the object) and in

human organisations (e.g. a job position is filled by an employee).

 In designed systems organisational descriptions are means-end functional

descriptions and are at a higher level of abstraction than perspectives based solely on

descriptions of either structure or process. For example, in object-oriented design these

structural and process perspectives are captured, respectively, in class and collaboration

diagrams. Neither of these representations captures the purpose of the entities

7 We might speculate that the messy real world does not conform to the discrete states required by
cybernetics. In particular there is a disjunction between the discrete states and control variables we can
define in artificial systems, and the complex interdependencies of the analogue real world. Ignoring the
challenges imposed by this chasm has led to exaggerated claims and subsequent lack of outcomes from
cybernetics and GST. By confusing information-flow with structural-coupling (Maturana and Varela,
1987), more extreme expressions of “second order” cybernetics and Information Theory (Shannon and
Weaver, 1949) have conflated the representation of the system with the system itself.
8 The word function is highly ambiguous. Nagel (1961 p256) lists six distinct usages of the word. We use
the word here in its biological sense, i.e. a functional explanation explains the behaviour of a system in
terms of its purpose or Aristotelian end-cause. Such explanations are common in physiology, biology and
the social sciences. The word function as commonly used in mathematics and computing, meaning a
mapping or transformation, lacks this teleological aspect.

24 PART I Adaptation and Organisation

represented. The concept of a role, on the other hand, does capture the purpose of the

entity. The shortcoming of many software descriptions is that they reduce the

description of organisation to just the topological structure or to just the

process/behaviour. A complete organisational description would need to indicate how

goals are transmitted through the system; how the entities are coordinated to avoid

performing extraneous or mutually destructive activity; how the system changes in

response to changing goals and environmental perturbations; and how the system

maintains its organisational viability.

2.3.1. Organisational structures
A role within an organisation satisfies responsibilities to the system as a whole. Roles

are the nodes of designed organisational structures. This view of organisation has

much in common with the conception of human organisations (e.g. bureaucracies)

where people fill positions (roles) within an organisational structure. An organisational

structure can be described separately from the players who perform those roles. In our

approach we distinguish between functional roles that fulfil some domain function (at

the process level S1 in VSM terms), and management (“organiser”) roles that regulate

and adapt the system (S2-S5 in VSM terms). We will discuss roles in more depth in

Chapter 5.

 As defined above, ontogenic adaptation is the ability of a system to change its

structure as it interacts with the environment. The separation of roles from their players

provides one degree of freedom in a role-based organisation, which we call indirection

of instantiation. Another degree of freedom in role-based organisations is the ability to

alter the relationship between roles in that organisation. Altering these associations

changes the organisational structure itself. We call this flexibility indirection of

association (Colman and Han, 2005). These two types of indirection are illustrated in

Figure 2-5 below.

Figure 2-5: Two dimensions of indirection in adaptive role-based organisations.

Role1 Role2

Player 2a
Player 1 c c

 C Serv1b Player 1a

Indirection
of

instantiation
(player

selection)

Indirection of
association

association

Chapter 2 Adaptive Organisations 25

 The network of associations between roles forms an organisational structure. In

ROAD, these associations are created using contracts. ROAD contracts are discussed in

Chapter 6.

2.3.2. Management of flexible role-based structures
The design of organisations involves the division of function into roles (Mintzberg,

1983). However, while this near-decomposability (Simon, 1969) of function in goal-

oriented systems may provide us with an organisational structure, it does not tell us

how that structure is coordinated or managed. In a live system any indirection must be

determined before or during runtime. An adaptive composite system needs to manage

its indirection. In this thesis we follow the approach of VSM and treat

control/coordination/management as a separate subsystem(s) from the functional

system (System ONE in VSM terms). This coordination-system can be described and

controlled independently from the functional subsystems that interact directly with the

application domain. This approach is analogous to the coordination-systems that exist

both in living things and in man-made organisations. In the realm of biology, the

autonomic nervous system can be viewed as a system that, in part, coordinates the

respiratory, circulatory, and digestive systems. Similarly, the management structure or

financial system in a manufacturing business can also be described at a separate level of

abstraction from the functional processes that transform labour and material into

products.

 This management involves both the ontogenic configuration (composition or

reconfiguration9) of the system, and the regulation of interactions over the composed

structure. To configure the structure the management system needs to be able to

dynamically create bindings between its loosely coupled roles and players on both the

above dimensions of indirection in response to changing demands and the changing

environment. To regulate the performance of the composed structure, the management

system needs to maintain some form of representation of the requirements and current

state of the underlying functional system. In cybernetic terms, these are control

variables as in Figure 2-1 above. These models will vary depending on the variables

that need to be controlled in order to maintain the system’s viability in its environment.

A biological example of a controlled variable is the level of oxygen supply to the cells.

In a business, the variable might be the amount of funds in the bank. In computerised

systems, such control variables could be derived from utility functions that measure

9 We use the word configuration to include both the concept of composition from scratch and the
reconfiguration of an existing structure.

26 PART I Adaptation and Organisation

computational or communication resources; or variables in the environment with which

the system interacts. Management of software role structures is discussed in Chapter 7.

2.4. Summary - a taxonomy of adaptation in systems
We can summarise the above discussion by presenting a taxonomy of adaptation in

systems. There a many forms of adaptation in systems, and in this thesis we only

address a subset of those forms. In Figure 2-6 below, the boxes in bold represent the

focus of this thesis.

Figure 2-6: Taxonomy of adaptation in systems

 Reading from the top of the taxonomy in Figure 2-6, the quality of adaptability in

a system is the maintenance of a fit between the system and its environment. Fit means

the ability of the system to survive or remain viable within its environment. There are

three classes of adaptation: evolutionary, ontogenic and environmental manipulation.

These classes alter, respectively, the system type, the individual system and the

Adaptation
-maintaining fit between a system

and its environment

Evolutionary adaptation
- evolution of a class of

systems through
reproduction

Ontogenic adaptation
 - change to a single system

through restructuring -
self-production

Representational
design

Non-representational
emergent structure

Fit achieved through

e.g. genetic algorithms

e.g. neural nets

Process-centric /
algorithmic

e.g. generic
programming

not usually desirable in
software systems although

defining the system boundary
is often problematic

Environmental manipulation
- system changes the

environment rather than itself
production

Organisational role-
based paradigm

This is our focus

Component
based

Design-time
adaptability only

Run-time
adaptive control

Structure-centric /
dynamic architectures

First order goal-oriented
systems

Systems focused on survival
or higher order goals

e.g. generic middleware

Chapter 3

Chapter 2 Adaptive Organisations 27

system’s environment. In this thesis we are concerned with ontogenic adaptation – the

restructuring of the individual system.

 Systems that exhibit ontogenic adaptation can be further divided between those

that are only focused on survival, and those that also need to meet first-order goals, i.e.

that are teleological. Natural systems are typically thought of as being focused on

survival, whereas artificial systems, such as software systems, are designed to maintain

or achieve first-order goals.

 Goal-orientation in ontogenic systems can be the emergent behaviour that is a

result of processes such as reinforcement learning, or can be a result of the deliberative

design of structures that the meet those goals. In the former case the structure of the

organisation is emergent (Holland, 1998). In the software domain, emergent structure is

typified by neural networks and swarm intelligence. While such systems, such as ant-

colony simulations, can be trained or tweaked to achieve particular goals in

environments with limited dynamic variation, they tend to be focused on solving

particular classes of problem (e.g. pattern recognition, search algorithms), and are not

adaptable to changing goals10. On the other hand, this thesis is concerned with systems

whose structures are deliberately designed to facilitate the operationalisation of first-

order goals.

 As such the approach here is structure/architecture centric. This is in contrast to

algorithm-centric approaches such as the Demeter method (Lieberherr, 1996) which

attempts to achieve adaptivity by decoupling the details of a data structure from the

operations on those structures. In the Demeter method, executable programs are

customised from high-level ‘adaptive’ programs. These generic programs are linked to

detailed data structures via ‘class dictionary graphs’.

 A further classification that needs to be made is the time that adaptation occurs

during the development process of the system. As pointed out above, a distinction is

often made between adaptable software that is easily modifiable at design time, and

adaptive software that can modify itself at run-time (Herring, 2002). In software terms,

this distinction between adaptable and adaptive is rather crude. McKinley, Sadjadi et al.

(2004) provide a more nuanced classification. Composition, a type of adaptive

operation, can occur at development, compile, link, load and run times. The degree of

adaptability in software systems is classified as hardwired, customisable, configurable,

tunable and mutable, depending on the time when composition occurs, and whether the

10 Fogel (1995 pp14-15) points out that “genetically hard-coded behaviour is inherently brittle”, that is
unable to adapt to unexpected perturbations in the environment. He cites the example of hunting wasps
inability to adapt to the smallest changes in the environment that change the preconditions for a behaviour.

28 PART I Adaptation and Organisation

composition is static or dynamic. In this work we will refer to software systems as

adaptive if they can change themselves at runtime without recompilation. In particular,

we are interested in software architectures that implement some form of managed

control as suggested by (Shaw, 1995) and have the ability to reconfigure themselves.

There have been a number of attempts to develop such adaptive architectures. The next

chapter reviews these approaches.

 The final distinction we make in our taxonomy is between runtime adaptive

architectures that are based on role-based organisational concepts, as discussed in the

previous sections of this chapter, and those architectures in which components are the

structural nodes. This is what distinguishes our approach from other architectures

surveyed in the next chapter.

 To conclude, we can characterise the focus of this thesis in terms of the questions

on the nature of adaptation which we posed at the beginning of this chapter. Thus, we

are concerned with ontogenically adaptive systems that can adapt at runtime to changes

in their environment and to changes in their goals and requirements. These systems can

adapt to changes by dynamically altering their structure, and by regulating the

behaviour over that structure. In system-theoretic terms, we present a framework for

building ontogenically adaptive systems with the following properties:

• A flexible structure based on the radical separation of role from role players. This

provides two levels of indirection: indirection of association between roles, and

indirection of instantiation between roles and players.

• The dynamic management of these indirections within a composite through

configuration and regulation. This management is based on the separation of

control from process, and requires the runtime monitoring of the system.

• The distribution of management control down through the system. The system is

recursively composed self-managing composites that have well-defined

boundaries. The processes between composites are regulated by a management

system. This management system is distinct from the functional system, and it is

these management processes that maintain the organisation of the system.

3

Adaptive Software Architectures

The previous chapter described the characteristics of ontogenically adaptive systems,

and placed ontogenic adaptation in the context of adaptation in general. Ontogenically

adaptive systems maintain their organisational viability by dynamically altering their

structure (configuration), changing their components, and regulating the behaviour over

that structure. To recap our formulation:

Ontogenic Adaptation = Structural Plasticity + Component Interchange + Organisational
Regulation

In this chapter’s literature review, we use the concepts presented in the previous chapter

to analyse and classify adaptive software architecture frameworks. Software

architecture is taken to mean a high-level view of a software system seen as a

configuration of components1 and connectors (Garlan and Shaw, 1993). Connectors

between the ports or interfaces of components define the permissible behaviours that

can occur between components. In the context of software architecture, our definition

of ontogenic adaptation above can be rephrased as

Ontogenically adaptive architecture = Dynamic structure + Management

where management activities monitor the system, reconfigure the structure and regulate

the behaviour over that structure.

1 The word component is used very generally here to mean any encapsulated software entity that has
behaviour described by an interface. Components in this sense could include objects, components (as per
(Szyperski, 1997)), agents, services and so on. While some Architectural Description Languages (ADLs)
such as Darwin (Magee and Kramer, 1996) treat connectors as components, here components are taken to
be the nodes being connected.

30 PART I Adaptation and Organisation

 In this chapter we will briefly examine the literature on dynamic architectures that

can replace their components (component interchange or indirection of instantiation)

and change the relationships between those components (structural plasticity or

indirection of association). Having a representation of a flexible, dynamically

configurable structure is a necessary, but not a sufficient, condition for an adaptive

architectural system. Any adaptive architecture must show how such indirection of its

flexible structure is managed. In 1995 Shaw proposed that, in some types of

application, an architectural idiom based on control theory is appropriate (Shaw, 1995).

Since then many approaches have been proposed that develop ways to control or

manage components. While not all management approaches necessarily incorporate

control-theoretic notions such as control variables, feedback control, etc., they do

separate a controller or manager from the process being controlled. We will examine in

more detail architectural frameworks that provide ways to manage indirection in the

structure. Such architectural frameworks describe generalised configurations of types of

component that perform systemic functions at a management level of abstraction

 Having a dynamic architecture with some management capability does not, of

course, guarantee that the software system itself will be ontogenically viable, i.e. that it

will be able to survive and continue to meet its goals by maintaining its organisational

integrity. An effective management regime is also needed. In the literature review that

follows later in this chapter, we will survey a range of recent work on adaptive software

architecture. In this range there are many variations in both architectural structure and

management regimes.

 This chapter is structured as follows. The next section examines some general

requirements for ontogenic adaptation in software. Section 3.2 distinguishes between

two broad approaches to developing adaptive software, namely, those approaches that

focus on the structure of the architecture, and those approaches concerned with

measuring the quality-of-service (QoS) performance2. The third section identifies a

number of distinguishing characteristics in the adaptive architectural frameworks we

review. Section 3.4 discusses and justifies the scope of the literature review, and briefly

discusses the many related areas that are not covered. We then review a number of

these frameworks, categorising them according to the distinguishing characteristics

listed in the preceding section. We conclude the chapter by presenting a comparative

table that summarises the characteristics of the reviewed frameworks.

2 We use the word performance in this thesis in a very general sense, i.e. the actual level of fulfilment of
any ‘non-functional’ requirement.

Chapter 3 Adaptive Software Architectures 31

3.1. Requirements for ontogenic adaptation in software
architectures

In the domain of software systems, much research has been aimed at creating systems

that can restructure themselves at an architectural level of abstraction – i.e. restructure

the relatively course-grained components and connectors that constitute the composite

system. In ontogenic adaptation three types of change can be identified. Functional

reconfiguration we define as the alteration of the types of functional relationship

between entities in the system. Non-functional reconfiguration involves restructuring,

but no new types of functional relationship are defined. Regulation of a system changes

the characteristics of existing relationships in the system so it can maintain its viability

and continue to meet its goals. We can distinguish different operations involved in

these types of change as applied to software architecture. Functional reconfiguration

involves one or more of the following operations:

• Addition of a new type of component that has a new functional relationship or

interface3 with the system.

• Removal of a component so that there are no longer components of that type and

association in the composite.

• A change in the types of relationship between components

Non-functional reconfiguration involves one or more of the following restructuring

operations that change the instances of components of a given type, or that effect the

multiplicity of relationships between types:

• Replacement of an instance of a component with another instance that fulfils the

same function (implements the same interface).

• Replacement of an instance of a connector with another instance that connects

components on the same interfaces (ports).

• Addition of a duplicate component (and associated connectors) that conforms to

an existing type functional relationship in the composite

• Removal of a duplicate component, provided there remain component(s) that

share the same relationship type. In other words the components involved

duplicate the same interface and perform the same function with respect to the

composite (for example in parallel processing).

Regulation that does not change the type of function involves:

3 Interface is used here in the sense of required and provided interfaces of a component that define the
functional relationships. The concept of an interface can be extended to a “rich” interface that defines the
non-functional aspects of a relationship.

32 PART I Adaptation and Organisation

• Altering the parameter(s) of existing components thus regulating the function of

components.

• Altering the parameter(s) of existing relationships thus regulating the interactions

/ connections between components.

As well as a flexible and dynamic structure that permits the above operations these

operations need to be controlled and managed. To achieve effective adaptation, the

manager of the system or composite must have the following properties:

• A representation of its composite’s structure. If a manager/controller of the

system is to reconfigure it, the manager must hold a representation of its

structure, and be able to sense the actual behaviour over that structure. In a self-

adaptive system, this manager is part of the system. The system may also need

the ability to reason about the representation of the structure to determine if

structure is well-formed, and if it will produce the desired behaviour.

• A means for reconfiguring and regulating the structure. The manager must have

functional and non-functional operations, as describe above, for manipulating the

structure including the ability to create connections and bind entities to the

system. The manager needs to decide how to fix (determine) any indirection

created by the flexible structure. (Given its ability to create structure, the

manager may also have the ability to create a system from static descriptions.)

• When a change in the system, requirements or environment results in the system

no longer meeting its goals, the system needs to know that reconfiguration or

regulation is necessary.

• Once the need for reconfiguration is established, the system needs to know what

alternative configuration(s) can better meet those goals, and how to safely

transition the system to the better configuration. There may also need to be

higher levels of control regulation to ensure against unwanted instability resulting

from the change process.

3.2. Approaches to representing adaptive architectures
Research efforts in adaptive software architecture address one or more of the above

properties of reconfigurable systems. Before reviewing the current literature on

adaptive architectural frameworks later in this chapter, we will first distinguish two

complementary categories of approach to defining dynamic architectures that allow the

structure and behaviour of the system to be reasoned about4. As illustrated in Figure 3-1

4 There are many ways the dynamisms of a software architecture can be classified. In his survey Bradbury
(Bradbury, 2004) lists eleven definitions of dynamic change that have been widely cited.

Chapter 3 Adaptive Software Architectures 33

below, the first category is primarily concerned with structure, and making sure that the

dynamic structure is well-formed. Structure is the concern of configuration

management activities. The second category concentrates on the measurement of the

qualities of interactions over a structure. Controlling the quality of interactions is the

concern of regulatory management activities. These categories are not mutually

exclusive but, rather, represent different dominant themes for describing frameworks.

As shown in Figure 3-1, these modes of description can be further classified according

to the mechanisms for achieving configuration and/or regulation. Some of the

frameworks we discuss, such as contract-oriented frameworks, can be seen as a mix of

structure and quality-centric descriptions. We discuss these categories in more detail

below.

Figure 3-1: Representing dynamic architectures

3.2.1. Structure-centric descriptions
A number of Architecture Description Languages (ADLs), such as Dynamic Wright

(Allen, Douence and Garlan, 1998) and Darwin (Magee and Kramer, 1996), attempt to

represent architectures with a dynamic structure. Approaches that are primarily

concerned with functional change are largely formal. They are motivated both by the

need to compose functionally well-formed systems, and the need to express the

dynamic transformation of the structure. Bradbury (2004) surveys a number of formal

dynamic architecture languages and evaluates the extent to which the formalisms

support the specification of self-managing systems. The formalisms include graph-

based, logic, process algebra and other approaches. Each approach has various

strengths. Bradbury examines the relative expressiveness of the languages in terms of

component and connector addition/removal to/from the structure. Formalisms also

vary according to whether they emphasise the behaviour of the system (as, say,

Adaptive
Architectures

Structure-centric
descriptions

Quality-centric
descriptions

Predefined
configurations

Restructuring
operations and

tactics

Constraint
descriptions

Contract-
oriented

Control-
oriented

regulation configuration

34 PART I Adaptation and Organisation

naturally expressed in a process algebra) as opposed to an emphasis on the structure of

the components and connectors (as, say, naturally expressed in a graph grammar).

 Dynamic architectures can also be differentiated according to whether the

description is positive (describes what is) or negative (describes what cannot be).

Positive descriptions enumerate the acceptable configuration states of a structure. Such

approaches have less ability to adapt to a wide range of environmental variation than

architectures where possible structural configurations are defined using constraints.

Enumerated configurations have to be thought of by the designer in advance. On the

other hand, constraint-based approaches potentially provide more indirection in the

structure because they only define what is not a valid configuration. However, there is a

cost to this greater indirection: the runtime mechanisms for the selection of components

and for their configuration need to be more capable, and thus require powerful

formalisms for reasoning about the structure. In order of increasingly greater

indirection in the description, dynamic architectures can be classified as follows:

• Types of components and connectors are fully specified prior to runtime, as are

the alternative configurations (as, for example in Dynamic Wright (Allen,

Douence and Garlan, 1998)). Selection of configuration is predetermined in that

particular configurations are predicated on particular environmental states.

• Types of components and connectors are specified prior to runtime, but the

selection of components and their association with connectors is determined by

predefined rules for manipulating the structure. It is these operations on the

structure that are selected when reconfiguration is needed, rather than pre-defined

configuration states. Operations are often selected by using predefined sequences

of operations called tactics. e.g. (Garlan, Cheng, Huang et al., 2004)

• New types of components and connectors can be added at runtime, but the

selection and combination of components is determined by constraints. At

runtime, configurations need to be validated, given the constraints and the

available components. Components do not have to be of the same type or even

form an equivalence class. For example, the Darwin architecture language

(Magee and Kramer, 1996) is designed to dynamically define a set of valid

configuration actions given a set of architectural constraints. The constraints are

similar to an architectural style (Shaw and Garlan, 1996).

We will not examine the diverse range of dynamic architecture languages here, as this

is provided elsewhere (Bradbury, Cordy, Dingel et al., 2004), other than to note that a

number of them have been used as the representational basis for adaptive frameworks

that are discussed in the review of literature below.

Chapter 3 Adaptive Software Architectures 35

3.2.2. Quality-centric descriptions
Non-functional transformation is the focus of other approaches to describing software

architecture5. These approaches are concerned with representing structures in which

changing performance and other qualities (reliability, resource allocation, security etc)

can be represented and managed. If an architecture, typically in the form of a

framework, is to implement non-functional adaptation (reconfiguration and regulation)

it needs to describe how it performs some, if not all, of the following functions:

• There must be a way of characterising and quantifying non-functional

parameter(s) of interest (e.g. latency, reliability, cost). These parameters must be

represented both as a required value or set of values defined by constraints, and

as an actual value.

• It needs to provide, or be able to receive inputs from, mechanisms for monitoring

the quality attributes of interest.

• Because non-functional properties typically cross-cut the functional structure,

those properties may need to be modelled across the system, and across different

levels of abstraction. For example, if a system is to have a level of reliability then

its components must also have some level of reliability.

• Because a system may have a number of competing qualities it needs to satisfy,

there may need to be a way of balancing these requirements to produce an

optimal outcome (e.g. throughput versus cost).

• There needs to be some mechanisms and strategies for mitigating ‘under-

performance’; that is, regulating or restructuring the system when an actual

quality parameter does not fulfil the requirements for that parameter.

While each of the frameworks discussed below possess some of the above properties,

none comprehensively address them all.

 As was shown in Figure 3-1, a distinction can be made between contract-oriented

and control-oriented approaches to implementing systems with the above regulatory

properties. Control-oriented approaches regulate entities by monitoring the changes in

the values of control variables, and then setting process variables (as described in the

previous chapter). Contract-oriented approaches regulate the interactions between

entities by defining permissible types of interaction and the performance levels of those

interactions. Both approaches define required performance levels, have some sort of

monitoring mechanism to ensure the required level of performance is being met, and

5 Outside the context of adaptive software architectures, various approaches to characterising and
modelling quality attributes have been developed (e.g. (de Miguel, 2003) provides a summary of
approaches to the specification of QoS models).

36 PART I Adaptation and Organisation

take action to correct any underperformance. In control systems this involves the

controller changing some property of the controlled entity. In contracted systems the

entity needs to autonomously meet the requirement. As contracts can also be used to

define relationships between components, they can be viewed as connectors that define

the structural relationships in a system. Contracts (or ‘connector types’ as in (Allen and

Garlan, 1997)) can therefore be used to describe both the structure and quality of

relationships, as illustrated in Figure 3-1 above.

3.3. Distinguishing characteristics of adaptive
frameworks

While software architectural languages provide ways to describe software architectures,

architectural frameworks provide archetypal arrangements of generic types of

component. The functions defined by adaptive architectural frameworks can be

differentiated in many ways. As we pointed out at the beginning of this chapter, the

management of an ontogenically adaptive architecture involves (re)configuration and

regulation activities. The characteristics of these activities, along with the

characteristics of the management system itself, vary markedly between frameworks.

Using these categories of configuration, regulation and management, we define a

number of differentiators which we will use to compare the dynamic architectural

frameworks surveyed in the next section of this chapter. These distinguishing

characteristics can be seen as an elaboration of the desirable properties for adaptive

architectures we listed in Chapter 1; i.e. grounded, exogenous, self-managed, recursive

and practical.

1. Configuration

1.1. Reconfiguration possible at runtime.

Can the connections between components in the structure be changed at runtime?

1.2. Composition based on declarative description possible at runtime.

Is it possible at runtime to create compositions from declarative descriptions, or

does the basic structure have to be defined at compile time?

1.3. Functionally recursive structure.

Do configured composites of components themselves form a unity that can be

configured into larger composites? Can the management regime be scaled to

handle the different granularities of such recursive composition?

1.4. Non-functional restructuring supported.

Can multiple components of the same type be created in parallel to serve a single

functional output?

Chapter 3 Adaptive Software Architectures 37

1.5. Elements can be substituted (indirection of instantiation supported)

Can one component be substituted for another component at runtime? Can the

components be safely substituted?

1.6. Supports heterogeneous components.

Can the components in the system be based on different software technologies?

For example can objects, components, services, and agents be used in the one

composite?

1.7. Structure is entirely defined and controlled by management.

Are the components ignorant of the structure i.e. do they use “blind

communication” (Oreizy, Gorlick, Taylor et al., 1999), or do the entities that

form the structure have to have a representation of (some of) the relationships in

that structure?

1.8. Partial instantiation possible.

Can an application built using the framework continue to function even if not all

components are present at any one time in the structure?

1.9. Formal reasoning about structure possible.

Can the structure be formally represented so that it can be reasoned about? For

example, can proposed compositions be checked for integrity?

2. Regulation

2.1. Non-functional regulation possible.

Does the application have the ability to monitor non-functional properties, and

adjust its behaviour accordingly?

2.2. Control dynamics supported.

Does the application support control-theoretic concepts such as control of

hysteresis, negative feedback and so on?

2.3. Utility can be defined arbitrarily

Can the control variables used to regulate the system be defined arbitrarily by the

application programmer, or are they intrinsic to the system?

2.4. Utility requirements can be changed dynamically.

Can the goal (set-point) to be achieved by some interaction, as measured by a

utility function(s), be changed at runtime?

2.5. Type of utility can be changed dynamically.

Can different types of utility be added to the monitoring mechanisms at runtime,

or does the measurement utility need to be defined at design time?

2.6. Multi-dimensional utility supported.

Can multiple utility functions be evaluated for the one component or transaction?

38 PART I Adaptation and Organisation

3. Management

3.1. Mechanisms for determining the need for reconfiguration or regulation are

defined.

Are the mechanisms defined by which the application can monitor its

performance, so that it can regulate its behaviour? How does the application

define and monitor the preconditions for reconfiguration?

3.2. Management as separate entity.

Are management functions encapsulated in a separate aspect or runtime entity?

3.3. Management exogenous versus endogenous (Arbab, 1998).

Can management control the application without having access to the internal

implementation of the components (blackbox or exogenous coordination) or is

management endogenous?

3.4. Management distributed versus centralised.

To what extent is management distributed down through the structure? Is there

one central manager for the whole application or does each sub-composite have

its own manager?

3.5. Management structure not subject to single point of failure.

Are there critical management nodes whose failure will lead to failure of the

whole application? Even if management is distributed there may still be

dependencies between management nodes that can result in single point of

failure.

3.6. Separate management structure.

If there are separable management entities, do these entities have a network

separate from the functional structure?

3.7. Management can find and/or select components (i.e. resolves indirection of

instantiation).

Are runtime mechanisms defined (or referred to) for finding suitable candidate

components, and for selecting the best candidate?

3.8. Management mechanisms can be superimposed a posterior on functional

components.

Can an organisational structure be superimposed on components that have not

been designed to participate in such a structure? Exogenous management (point

3.3) is a prerequisite this superimposition.

3.9. Management is updatable.

Can management entities be dynamically updated with new strategies for

managing their composites? Alternatively, are mechanisms defined for a

manager to improve its strategies by learning?

Chapter 3 Adaptive Software Architectures 39

3.10. Management is substitutable.

 Can a less capable manager be replaced with a more capable manager?

3.11. Supervisory control possible.

Can management control be overridden by external control (e.g. a human

controller) in some circumstances?

3.12. Costs of reconfiguration can be estimated.

Are mechanisms defined to enable the manager to recalculate the costs of

reconfiguration, and to prevent unwanted oscillations in the system when

reconfiguration occurs?

4. Other

4.1. Implementation is apparent.

Is there evidence in the literature that the architecture has been implemented and

evaluated?

The above characteristics are a compendium of features relevant to ontogenic

adaptation found in the various adaptive architectural frameworks discussed below. As

such, none of the frameworks discussed meet all of the above criteria. Some of the

frameworks partially meet a criterion: for example, Plastik (Batista, Joolia and

Coulson, 2005) supports the definition of multi-dimensional utility, but this can only be

defined at design time. There are other desirable criteria that none of the frameworks

adequately address. In particular, although some frameworks allow the measurement

and regulation of quality attributes of particular components, none adequately define

mechanisms for formally reasoning about the aggregated performance of a composition

(as, for example, proposed in (Khan and Han, 2005)) . Such mechanisms would allow

the aggregated system-level performance to be derived from the individual actual

performances of the system’s components, or the required component performances to

be derived from a system-level requirement. However, some of the frameworks do

provide a basis for the future development of such capability.

3.4. Existing surveys and selection of literature
Surveys have been conducted on dynamic Architectural Description Languages

(ADLs). Medvidovic and Taylor (2000), in their survey of ADLs, use dynamism as one

of their criteria. A more specific focus on dynamic ADLs can be found in (Bradbury,

Cordy, Dingel et al., 2004) (Bradbury, 2004) and a literature review in Georgiadis’s

thesis (2002). In terms of dynamic architectural frameworks, however, much of the

work is recent and currently evolving. We are not aware of any comprehensive survey

of the adaptive frameworks that takes a broadly architectural perspective. Some of the

40 PART I Adaptation and Organisation

work on adaptive frameworks has direct antecedents in research into dynamic ADLs,

but other adaptive approaches arise from work done on distributed, pervasive, reliable,

survivable, autonomous, adaptive middleware, resource-aware real time, control-

oriented, grid, service-oriented software systems (to name a few strands).

 The following survey of literature on adaptive frameworks has been limited to

those approaches that involve some form of structural reconfiguration, and have

architectural elements that perform a defined management function. Based on the

work’s predominant focus, we have divided this literature into the categories shown in

Figure 3-1 above:

• Structure-centric frameworks

• Control-oriented frameworks

• Contract-oriented frameworks

What this survey does not cover
We have limited this survey to recently developed frameworks. Adaptive frameworks

developed in the 1990’s such as (Kokar, Baclawski and Eracar, 1999; Wermelinger,

1998; Oreizy, Gorlick, Taylor et al., 1999) are not discussed as little subsequent work

seems to have eventuated from these early approaches. Nor do we discuss what could

be termed adaptive architectural styles such as C2 (Medvidovic, Oreizy, Robbins et al.,

1996) and Weaves (Gorlick and Razouk, 1991). These styles impose restrictions on

how components can be connected, and how they can asynchronously communicate via

connectors. Although, in both C2 and Weaves, structures can be arbitrarily complex

and can be dynamically manipulated, they do not define any management

infrastructure.

 We also limit this survey to architectures that can define application specific

compositions. Other work has focused on defining generic adaptive middleware. Agha

(2002) argues that as software applications becomes more open and mobile,

middleware needs to move from being a glue that binds distributed systems together, to

being an enabler of dynamic interactions between autonomous actors. McKinley (2004)

sees middleware as the logical place to put adaptive behaviour that is related to cross-

cutting concerns such as QoS, fault tolerance and security policy. Adaptive frameworks

that address or rely heavily on middleware include COCA (Zhou and McKinley, 2005)

and CASA (Mukhija and Glinz, 2003). Other approaches see adaptive middleware as

the key to ubiquitous computing, with middleware providing adaptive management to

distributed applications (Hallsteinsen, Floch and Stav, 2005). Such applications may

make use of middleware as enabling technology that can provide services such as

Chapter 3 Adaptive Software Architectures 41

introspection and interception. Yet other approaches such as (Hillman and Warren,

2004) focus on providing algorithms and frameworks to ensure that system integrity

(synchronisation and state) is maintained during developer-initiated reconfiguration, in

particular, during component interchange. The focus in this thesis, however, is on

adaptive applications.

 Coordination languages also have much in common with dynamic architectures

(Cuesta, de la Fuente and Barrio-Solárzano, 2001). In particular, control-oriented

coordination languages (Arbab, 1998) compose and control the computational entities

in loosely coupled systems. Coordination frameworks by Andrade, Wermelinger and

colleagues (Wermelinger, Fiadeiro, Andrade et al., 2001) have much in common with

the dynamic architectural frameworks examined here. For example (Wermelinger,

Fiadeiro, Andrade et al., 2001; Andrade, Fiadeiro, Gouveia et al., 2002) define a

layered architecture with computation, coordination and configuration layers(‘3C’),

and where contracts are first-class entities. However, 3C is not architectural in that its

contracts are method-centric rather than entity-centric; that is, they define generic

interaction sequences that might involve many parties. Such approaches are primarily

focused on synchronisation rather than adaptivity.

 Other works that are not included in this survey are those approaches that focus

solely on adaptation to variable computational and/or network resources. A number of

adaptive control-based architectures focus on reconfiguration as a way of making

systems more survivable or dependable. For example, the Willow Survivability

Architecture (2001) (Knight, Heimbigner, Wolf et al., 2002) is focused on the

reconfiguration of large scale, heterogeneous, distributed systems to achieve network

fault tolerance. “The Willow concept derives from a realisation that software

configuration control and network fault tolerance are two different aspects of the

general problem of overall control of distributed systems” (ibid). While there are many

conceptual similarities between Willow and the architectures discussed below, in

Willow the emphasis is on the sensing and maintenance of wide-area network state.

Similarly, work by de Lemos and colleagues (de Lemos and Fiadeiro, 2002) propose

architectures that are fault tolerant. Likewise, the SMART (State Model Adaptive Run

Time) framework (Cangussu, Cooper and Li, 2004) focuses on applying control theory

in the form of linear state feedback models of the computational environment.

Resources (CPU, memory, bandwidth, etc) are monitored. A model of the ‘dominant

behaviour’, given these constraints, is formed, and then used as the basis for selecting

off-the-shelf components from a repository. This approach is not architectural in the

42 PART I Adaptation and Organisation

sense that the structural relationships in the system do not change. The focus is only on

component replacement.

 Another control-centric approach is IBM’s autonomic computing initiative (Ganek

and Corbi, 2003). Like the control-based frameworks discussed below, autonomic

computing conceives of a control-loop with three phases: sense-evaluate-act. As

originally envisioned, autonomic computing covers four aspects of self-management:

self-configuration; self-optimisation, self-healing; and self-protection (Kephart and

Chess, 2003). This broad conceptual vision has much in common with the themes of

this thesis. However, rather than being a particular framework or methodology,

autonomic computing is an umbrella that covers a diverse range of techniques, tools

and infrastructure platforms6.

 Current work on Web Service frameworks and standards also addresses many of

the same issues as dynamic architectures including dynamic composition, service

selection and management. Such parallels are unsurprising as the issues that confront

adaptive systems at a general architectural level still need to be solved in

technologically-specific approaches, such as Web services. Like dynamic software

architectures, work on Web services needs to address both functional and non-

functional adaptation. Service composition standards such as BPEL4WS (BEA

Systems, IBM, Microsoft et al., 2003) are not adaptive per se. Consequently there has

been much recent focus on making service composition more flexible. A recent

overview of dynamic workflow-based composition can be found in Zirpins, Lamersdorf

et al. (2004). These approaches focus on adaptive processes using process abstraction,

rather than focussing on adaptive structures as in architectural approaches. In terms of

non-functional adaptation, monitoring of services has also been addressed. Web

Services Distributed Management of Web Services WSDM-MOWS defines

“manageability” interfaces for Web services (OASIS, 2005) which could provide a

starting point for building adaptive Web services. Li, Han et al. (2005) show how the

interactive behaviour of a service can be declared and monitored to see whether its

behaviour conforms with the composition’s requirements. Baresi, Ghezzi, et al. (2004)

use external ‘Smart Monitors’ services rather than application-based monitors.

However, there is no mechanism for ‘monitoring the monitors’ (organisers and

contracts) as in a recursive structure. Ludwig, Dan, et al. (2004) propose the Cremona

framework that addresses many of the same issues as this thesis but focuses on external

service level agreements (SLAs) based on WS-Agreement (Global Grid Forum, 2004)

6 In practice, IBM now brands “autonomic” any IT management software that conforms to IBM’s
standards.

Chapter 3 Adaptive Software Architectures 43

rather than on the management of adaptation. Likewise, much work has be done on

dynamic SLAs in the context of Service-Oriented Computing paradigm, e.g. (IBM

Corporation, 2003; Skene, Lamanna and Emmerich, 2004; Tosic and Pagurek, 2005).

These ‘external’ mechanisms are outside the scope of this review and thesis. However,

later in this thesis, we show how the ROAD framework can be applied to Web service

composition (see also (Colman and Han, 2006a; Colman, Pham, Han et al., 2006)).

 Finally, approaches that are solely agent-oriented are not covered by this survey.

Agent-oriented methodologies take as a sine qua non open and dynamic environments

to which agents have to adapt. A major on-going research issue for multi-agent systems

(MAS) is how to achieve system level goals from collections of individual agents.

While much of the work to date has focused on negotiated team building and

organising mechanisms such as norms, there is a growing recognition of the need for

organisational structures (e.g. (Jaime Sichman, 2005),(Dignum, 2003)). A number of

methodologies developed, such as Gaia (Zambonelli, Jennings and Wooldridge, 2000),

explicitly address the need for organisational structure in software. We refer to MAS

literature again in Chapter 5 when we come to examine the nature of roles in software,

but we do not examine MAS approaches further in this review, as MAS adaptation is

largely a result of individual agents’ deliberations rather than organisational change.

3.5. Structure-centric frameworks
As pointed out above in Section 3.2.1, structure-centric descriptions of architectures

can be loosely classified as those that describe sets of valid configurations, those that

define reconfiguration operations and tactics, and those that define constraints. In this

subsection we discuss three structure-centric frameworks that use various combinations

of these descriptions.

3.5.1. Darwin based frameworks – using constraints
Rather than define what an architecture is, constraint-oriented approaches define what

an architecture is not. As discussed above, such an approach potentially provides

greater indirection, and thus adaptivity, to the structure, but at the cost of having to

resolve that indirection at runtime. To do this the manager needs to be able to generate

and reason about valid alternative structures. Constraint-oriented approaches, therefore,

need appropriately powerful ADL formalisms. The constraint-oriented approaches that

are examined here do not describe any mechanisms for QoS control. Georgiadis (2002;

Georgiadis, Magee and Kramer, 2002) proposes a runtime architecture based on the

Darwin architecture language (Magee and Kramer, 1996). The Alloy language

44 PART I Adaptation and Organisation

(Jackson, 2002) is used to model Darwin-compliant components7 so that structural

constraints can be expressed and analysed. This approach uses architectural constraints

as the basis for the specification, design and implementation of self-organising

structures for distributed systems. The advantage of having a self-organising

architecture is that there is no central configuration manager that can fail. Self-

organisation is achieved through each runtime component having a component

manager that maintains a representation of the enclosing structure (the configuration

view in Figure 3-2 below). The component manager is responsible for the connectors to

the required ports of other components. If there is any change in these connections, the

component broadcasts the change to all other component managers. This enables each

of the component’s configuration models to be kept consistent.

 The manager of each component is responsible for checking that the changes it

plans are consistent with the architectural constraints it holds. If the component fails, it

only affects the services it provides, and the connections to these services are always

controlled by the ‘client’ component (components control their required ports). This

way the failed component can always be replaced.

Figure 3-2: Self-managed components (from (Georgiadis, Magee and Kramer, 2002))

 This approach has a number of limitations. While Darwin’s formalism enables

automated reasoning on the structure of the architecture, it only expresses structural

relations. There is no provision in the framework for modelling non-functional

properties. Nor is there any provision for instrumenting the structure so that

performance can be measured.

7 A component, in Darwin, is a container of provided and required services. Services are provided and
required via ports. Ports are typed with the interface that is used to access the service. A component is
always associated with the same fixed number of ports during its lifetime. Conversely, ports should always
be contained by the same simple component during their lifetime. The set of ports that belong to a
component is the union of its provisions and requirements.

Chapter 3 Adaptive Software Architectures 45

 The examples used by Georgiadis show how to construct simple architectural

styles (such as a pipeline) from constraints. Whether more complex domain-specific

architectures can be defined from constraints is problematic. For example, in the realm

of agent-oriented programming it has proved difficult to produce purposeful behaviour

purely from constraints formulated at design time (Shoham and Tennenholtz, 1995).

Waewsawangwong (2004) recognises the difficulty in deciding the architectural

structure at runtime, based on constraints alone. He proposes an extension to

Georgiadis’s work that uses tactics. Tactics imperatively specify how a component can

assemble or reorganise itself in order to satisfy a given set of constraints. This work

appears to be at a very preliminary stage.

 While the aim of this approach is to create distributed management, this comes at

the cost of requiring global communication between all the components. However,

hierarchical composition that can be expressed in Darwin may mitigate this problem to

some extent. In a hierarchy the scope of the shared model that has to be maintained by

the components would be reduced, thus, in turn, reducing communication overhead and

the chance of inconsistencies between the various copies of the model that the

components hold. However, hierarchy comes at the cost of reintroducing single-point

failure problems that are avoided in fully distributed control.

 Other limitations of this approach are as follows. It is not clear how changes, that

simultaneous effect a number of components, can be orchestrated. Nor is there an

ability to validate structure or behaviour at the system level. This is because checking is

at the component level, and system-level behaviour can only be represented indirectly.

 Component managers (or the designer of the constraints) presumably need a

white-box understanding of the component to derive their constraints. Therefore,

coordination is not exogenous, in that it cannot be imposed on blackbox components.

Nor is management separable from the components. There is no way to introduce

“smarter” management at runtime (while rigorous, the form of structural management

described is very limited).

 Each component conducts instantiation of its required ports using a selector

function (at the time of writing this was manually coded rather than automated). As

there is no way of reasoning across the structure, how is it possible to know in advance

if there is a valid instantiation of the architecture? The following claim that the

“architecture stabilizes when all those required ports that can be bound are bound.

Stability is guaranteed in the absence of continuing failure for those systems in which

configuration rules guarantee monotonically increasing binding.” (Georgiadis, Magee

46 PART I Adaptation and Organisation

and Kramer, 2002 p36). This assumption, that stability will be reached, seems to

assume that compatible components will be found.

3.5.2. Plastik - using pre-defined configuration actions and
constraints

Plastik (Batista, Joolia and Coulson, 2005) is a framework that supports a formally

specified runtime reconfiguration of systems through the integration of the

ACME/Armani ADL (Monroe, 2000) with a reflective component level runtime

(OpenCOM (Coulson, Blair, Grace et al., 2004)). The ADL description has two sub-

levels, as illustrated in Figure 3-3 below. The style level defines generic patterns (e.g.

protocol stack style) by setting constraints on the way types of component, connectors

and interface operations (‘properties’) can be composed. A configuration defined by a

style is encapsulated in a ‘component framework’. The instance level particularises the

style for a specific context (e.g. TCP/IP stack).

Figure 3-3: Plastik's System Architecture (from (Batista, Joolia and Coulson, 2005))

 The ‘system configurator’ is also divided into two levels. The singleton

architectural configurator is responsible for accepting and validating reconfiguration

requests from the ADL levels, while each deployed ‘component framework’ has a

runtime configurator that manages the runtime level. Constraints at the ADL level are

compiled into finite state machines in the runtime configurators. These configurators

are implemented in a scripting language that is generated by a compiler. This script

instantiates OpenCOM elements that correspond to ADL-level specifications.

 Plastik supports ‘programmed’ and ‘ad-hoc’ reconfiguration. Programmed

reconfigurations can be foreseen at design time and are expressed as ‘predicate-action’

specifications. Ad-hoc reconfiguration, on the other hand, specifies certain invariants

which configurations cannot violate. Ad-hoc configurations are not specified at the

ADL level (only the constraints are specified), but change can be initiated from either

Chapter 3 Adaptive Software Architectures 47

the ADL and runtime levels. Change from the ADL level can be initiated by submitting

an architectural modification script to the architectural configurator, which is then

compiled into ‘diff’ script for the runtime configurator.

 The key advantage to Plastik’s approach is that it combines high-level

reconfiguration concepts with a robust runtime component framework. However, the

separation of architectural and runtime layers into two separate representations

connected by compiled scripts, creates the problem of keeping the two representations

synchronised. This is particularly so because change can be initiated at either level.

There is also no discussion, in the work reviewed, of the nature of the runtime

conditions that can trigger reconfiguration. Nor is there a way to explicitly model non-

functional requirement or change. The only reconfiguration operations are the addition

and removal of components. Monitoring is not part of the framework but is something

that, it is claimed, can be provided by the components or a third party. At the time

(Batista, Joolia and Coulson, 2005) was written, the Plastik system had not been fully

implemented, although “key aspects of the design” had been trialled.

3.5.3. ArchJava – creating predefined configurations
ArchJava (Aldrich, Chambers and Notkin, 2002) is an extension of Java that allows the

structural architectural description to be written in implementation code. The authors

see the advantages to not having a separate ADL as promoting traceability and ensuring

consistency between the architecture and the fine grained implementation. The

ArchJava language adds architectural constructs to support components, connections

and ports. A component is a special type of object that communicates with other

objects in a structured way via ports. Regular method calls are not allowed. Ports

represent logical communication channels that can be specified as provides, requires,

and broadcasts. Components can be composed of other connected components. Nested

subcomponents can either be statically or dynamically created. Dynamic components

can be created with a parent component using a new operator, as is used to create

ordinary Java objects. Connectors can also be dynamically created, and will be

removed when they are no longer referenced.

 While ArchJava does not address the management aspects of adaptive systems, an

extension has been proposed that uses custom connectors (Aldrich, Sazawal, Chambers

et al., 2002) based on ArchJava. However the proposed framework only describes the

structural aspects of an application, and does not address behavioural or non-functional

aspects. It also assumes synchronous communication between components. Despite

48 PART I Adaptation and Organisation

this, ArchJava potentially provides a starting point for a generic approach to building

adaptive applications.

3.6. Control-oriented frameworks – taking non-functional
requirements into account

Other frameworks reconfigure and regulate themselves in response to perceived

changes in qualities of interest. Control-oriented approaches to architectural adaptation

adopt the paradigm suggested by Shaw (1995); that is, of software systems being

control systems. These frameworks define a control-loop with three phases: sense-

evaluate-act. Software is envisaged with a separate control component(s) or layer that

monitors the system and adapts the structure to changing environments or

requirements. Much recent work on adaptive architectures has originated from

Carnegie Mellon University (Cheng, Garlan and Schmerl, 2005; Huang and Steenkiste,

2004; Garlan, Cheng, Huang et al., 2004; Cheng, Huang, Garlan et al., 2004; Garlan,

Poladian, Schmerl et al., 2004). In these related approaches, the system’s architecture is

used as the control model in the runtime system. This model makes the system’s

topology and behavioural constraints explicit.

3.6.1. Rainbow
Rainbow (Garlan, Cheng, Huang et al., 2004; Cheng, Garlan and Schmerl, 2005) is a

framework that is designed to provide a reusable infrastructure together with

mechanisms for specialising the infrastructure to specific systems. The reusable units in

the Rainbow framework are in three layers:

• System-layer infrastructure. Provides an interface to the functional system

o Probes for measuring the system

o A resource discovery mechanism to find new resources based on some

criteria

o An effector for carrying out system modification

• Architecture-layer infrastructure. Maintains the representation of the architecture

and plans and executes adaptations. It includes a

o Model manager that provides access to the architectural model

o Constraint evaluator that checks the model periodically and triggers

adaptation if constraints are violated

o Adaptation engine that determines what adaptations (strategies and tactics)

need to be performed. These are then executed by the Adaptation engine.

Chapter 3 Adaptive Software Architectures 49

• Translation infrastructure. Maps information across the abstraction gap between

the system and architecture layers – for example, translates an architectural level

change operation into a system-level operator.

Figure 3-4: Rainbow framework (from (Garlan, Cheng, Huang et al., 2004))

 The authors believe that common architectural styles will be able to be extended

with “adaptation styles”; that is, with prototypical adaptation operators and strategies.

Adaptation operators define reconfiguration operators common to the style – for

example AddService and RemoveService. Adaptation strategies specify the changes to

be made to the system in response to the underperformance of some requirement –

whether functional or non-functional. Given the constraints and a determination of the

problem, a tactic is used to mitigate the problem.

 The Rainbow framework assumes that the management framework has access to

some measurement, resource discovery and effecting mechanism to observe and change

the functional system. In this sense, while Rainbow is exogenous to the functional

system, the management regime cannot be superimposed retrospectively on the

functional system. The functional system must have the necessary instrumentation to

allow itself to be monitored, and must also have the mechanisms to allow its structure

to be reconfigured. Applications, therefore, either need to be designed to comply with

the requirements of the management framework (and these may not be known at

design-time), or must conform to some common middleware standards. The

50 PART I Adaptation and Organisation

adaptability of the management framework is therefore limited, because the required

probes and effectors may not be present in the functional system or middleware.

 In Rainbow, adaptation strategies are globally defined across the architecture. The

authors point out that having a central representation of the architecture makes the

system subject to single-point failure. Application examples focus on network

reconfiguration. They suggest, as future work, applying Rainbow instances to multiple

subsystems of a distributed system. These instances would then need to be coordinated.

However, it is not clear how generalisable such strategies would be across subsystems.

3.6.2. Self-management modules
A variation of the Rainbow framework is found in (Cheng, Huang, Garlan et al., 2004).

There is a recognition that management concerns (composition, change, performance,

cost-of-service, etc.) are multi-dimensional and need various utility models. This

approach encapsulates these models that cross-cut the functional system in “Self-

management modules” (SMs). Each module is responsible for a different management

concern across the system. The paper addresses the problem of coordination of multiple

SMs to ensure desirable system-level behaviour.

 Coordination between SMs is necessary at each phase of the sense-evaluate-act

control-loop. As shown in Figure 3-5 below, coordination in each of the phases is,

respectively, addressed by:

1. Sensing: Consistent system access – so that all SMs are sensing the same system

data and translate that data in the same way.

2. Evaluation: Non-conflicting decision making – common utility models need to be

used to interpret the data on resources. For example, what is “high cost” or

unacceptable “slow speed”? Mechanisms for resolving/negotiating

conflicting change requirements of SMs are also needed.

3. Action: Consistent model – when more that one SM wants to make a change to the

system, they must be able to share information to coordinate action, and

consequently need a consistent model of the architecture of the system.

The paper addresses the first and third of these coordination aspects. The second, and

presumably much more problematic aspect of coordinated decision making, is left to

future work – although they do suggest some general control patterns like “master-

slave”, “democracy”; “balance-of-power” (mutual veto); etc.

Chapter 3 Adaptive Software Architectures 51

Figure 3-5: Rainbow framework extended with multiple Self-Managed Modules (SMs)

 (from (Cheng, Huang, Garlan et al., 2004))

 In their example, they categorise Libra (a global configuration approach) and

Rainbow as SMs, and attempt to coordinate the management between these. Libra’s

focus is “global configuration”, whereas Rainbow follows an “incremental adaptation”

approach8. These SMs are differentiated as implementations with different scopes of

action, rather than being SMs that address various utility functions. (The aim,

presumably, is to make use of COTS management components).

 This variation of Rainbow has a number of limitations. The term “self-

management module” to describe these cross-cutting management modules seems to be

a misnomer. The scope of application of these modules is still global, like the original

Rainbow framework. The functional components within the framework are not self-

managed. Failure of a SM will lead to failure of the management for that concern (e.g.

accounting) across the whole system.

 While this approach modularises management concerns, these concerns are rarely

orthogonal. Typically, non-functional requirements (performance, cost, reliability etc.)

are highly inter-related, and need to be traded-off against each other. It is not clear that

8 An alternative to the functional/non-functional distinction is provided by (Cheng, Huang, Garlan et al.,
2004), who distinguish between “global configuration” and “incremental repair”. We would argue that a
definition based on scope of change is not particularly useful, as the same types of reconfiguration
processes occur at all levels of granularity.

52 PART I Adaptation and Organisation

the separation of non-orthogonal management concerns into separate modules is a

sensible approach. While the separation of these concerns may add analytical clarity

and perhaps enhance reuse, the management system must sense, decide and act as a

unity. Such an approach creates a problem of synthesis of these concerns. Attempting

to apply coordination management at a global level, as this framework does, comes at

the cost of considerable additional complexity. (The authors themselves point to the

problem of the explosion of coordination paths between SMs). A better approach may

be to provide the as-needed ability to add coordination at the interaction level, as is

done in contract-based approaches. Conflicts between NFRs (coordination

complexities) can then be resolved at a more local level.

 For these reasons, we would argue that decomposing a management system on the

basis of management concern rather than function, leads to a complex, hard-to-change,

non-scalable and ultimately unmanageable organisation. Nor does this form of

decomposition address the problem of single-point failure.

3.6.3. Rainbow variant (Huang et al.)
Another framework related to Rainbow is described in (Huang and Steenkiste, 2005;

Huang and Steenkiste, 2004). Like Rainbow, it adopts an externalised approach to

adaptation, but the focus is on allowing developers to add run-time adaptability to their

services. The framework assumes the initial configuration of the service is already

completed, and that infrastructure for measurement and service discovery are already in

place. The adaptability provided by the framework is limited to self-adaptation

capabilities for a single component; that is, changing its parameters or replacing it. The

developer defines coordination policies and adaptation strategies that can comply with

the framework’s knowledge representation, and can, in turn, be used by the generic

“synthesizer” in the runtime framework to compose and adapt the service. This

approach has similarities to (Georgiadis, 2002) (as described above) in that

management is focused on the individual component (service). In this case, however, a

knowledge representation of the service’s policies and strategies is passed to a

generalised adaptation coordinator/manager which is responsible for carrying out the

adaptation. In (Georgiadis, 2002), adaptation decision making and action is the

responsibility of the component itself. The figure below illustrates Huang et al.’s

approach to “self-adaptation”

Chapter 3 Adaptive Software Architectures 53

Figure 3-6: Architecture for runtime local adaptation support

(from (Huang and Steenkiste, 2005))

 Adaptation strategies are the same as in Rainbow – when a constraint is violated,

the problem is determined and a tactic (set of actions) employed to mitigate the

problem. The actions can include altering component parameters, as well as component

addition and/or replacement. Strategies are created by the service developer specifying

rules dictating what mitigation actions will be taken when particular events occur.

These strategies are specified using the framework’s API.

 In the framework, the Adaptation Manager (AM) proposes a change of

configuration to the Adaptation Coordinator (AC). The AC’s task is to coordinate

various proposals to resolve conflicts and to identify incompatible strategies.

 The authors distinguish their action-event approach from the a “utility function”

approach (Walsh, Tesauro, Kephart et al., 2004). However, it would seem to us that a

utility function is just a continuous action-event function rather than a discrete function,

as described in the paper. Both types of function take, as an input, a change in state of

the system or its environment, and then output preconditions for a management action.

Continuous utility functions can define events that are triggered when the utility

function passes certain discrete threshold values. Such events could in turn trigger, for

example, a reconfiguration action.

 This variation of the Rainbow framework has the advantage of being able to focus

adaptation strategies to specific services/components, and to have those strategies

54 PART I Adaptation and Organisation

defined externally. This decoupling of (1) the mechanisms for executing a change from

(2) the definition of the high-level strategy to carry out the change, is a useful property

of adaptive systems. As will be seen later in this thesis, our approach of separating

management roles and players facilitates this decoupling. Depending on how the

framework is implemented, this decoupling could presumably allow strategies to be

developed and modified dynamically at runtime, thus allowing for adaptive learning or

supervisory control. Such directions for use, composition and repair (a “service recipe”)

of the service could be declaratively defined, and append to the service in, say, an XML

file to the service.

3.6.4. Aura - task based self-adaptation
As we have pointed out above, the need for adaptation can arise from a change in the

environment of the system, or from a change in what is required of the system. One

example of requirement change is the situation in which pervasive or ubiquitous

systems need to change their behaviour to suit the current user, or the user’s context. In

the Aura project, Garlan et al. (2004) define an adaptive framework for the construction

of “task-aware” systems. A task is a “set of services, together with a set of quality

attribute preferences expressed as multidimensional utility functions, possibly

conditioned by context conditions.”

 Tasks models capture and model user goals and intent, and represent quality

attributes of the services that perform those tasks. These quality goals can be

conflicting. The adaptive system needs to find the optimal balance of qualities to suit

the user’s goals. To do this it needs to evaluate and consolidate multi-dimensional

utility functions. For example, in a video application bandwidth, screen size, frame rate

might all have to be balanced given the user’s goals and resource constraints.

 Aura is an infrastructure with three layers. These layers and their respective

functions are:

• Task Management (TM) – determines what the user needs from the environment

at a specific time and location

o monitor the user’s task, context and preferences

o map the user’s task to needs for services in the environment

o complex tasks: decomposition, plans, context dependencies

• Environment9 Management (EM) – determines how to best configure the

environment to support the user’s needs

9 The Environment in Aura refers to the user’s environment rather than just the computing system’s
environment.

Chapter 3 Adaptive Software Architectures 55

o monitor environment capabilities and resources

o keeps track of available service suppliers

o map service needs, and user-level state of tasks to available suppliers

o ongoing optimisation of the utility of the environment relative to the

user’s task

• Environment – comprises the applications and devices that can be configured to

support the user’s task

o monitor relevant resources

o fine grain management of QoS/resource tradeoffs

This framework can be viewed as consisting of two feedback loops – the TM reacts to

changes in, and maintains a model of, user preferences and context. The EM, on the

hand, monitors the applications, devices and resources, and maintains a model of the

technical environment. The EM also has to take account of the cost of change to the

configuration of the system, and ensures oscillation is avoided.

Figure 3-7: The Aura Architecture for Ubiquitous Computing

(from (Sousa and Garlan, 2003))

 The Aura project introduces an important concept to control-oriented adaptation in

software; that is, control loops are needed to adapt to both the external environment

(user, system context, problem domain), and the computational/network environment

(bandwidth, CPU, memory etc.). The multi-dimensional nature of quality attributes is

recognised, and formalisms (albeit crudely modelled) are introduced to calculate

optimal utility (Poladian, Sousa, Garlan et al., 2004). This has the potential to

complement the extensive work on user modelling, task analysis and adaptive user

interfaces (e.g. (Norman, 1984),(Horvitz, 1999),(Taylor, 1988), (Sullivan and Tyler,

1991), (Duce, 1991)). Work on goal-oriented reasoning about non-functional

56 PART I Adaptation and Organisation

requirements (e.g. (KAOS, 2003), (van Lamsweerde, 2001; van Lamsweerde, 2003)

could also be used to extend this approach.

3.6.5. Viable System Architecture
The Viable System Architecture (VSA) proposed by (Herring, 2002), takes an

explicitly control-theoretic approach to building software systems. This high-level

reference architecture defines a set of interfaces for components that accords with the

control model postulated in Beer’s Viable System Model (Beer, 1984) which we have

already discussed in Section 2.2.4 of the previous chapter. Herring takes Beer’s concept

of a “viable system” and proposes the encapsulation of such systems into “viable

components”. Each viable component potentially implements all the management

subsystems (described in the previous chapter), and has a standard set of interfaces that

allows the subsystems within each component to communicate. A viable software

system is made up of a recursive hierarchy of viable components. The recursive nature

of the architecture, and the relationship between the subsystems, is illustrated in Figure

3-8 below. In the figure, the management systems (2-5) control the Plant system 1. The

Plant has three viable subsystems (A, B, C) each with their own controllers (1A, 1B, 1C).

There are also typed communication links between the controller in the enclosing

component, and the controllers in the subcomponents (not shown).

Figure 3-8: Simplified Viable System Model Diagram (from (Herring and Kaplan, 2000))

 Viable System Architecture has a number of strengths. The distinction between

different types of control provides a more nuanced basis for discussing control in

adaptive systems. In particular, it addresses issues such as regulation, stability and

homeostasis that are rarely discussed in the context of software architectures. The

recursive architecture of self-managed components also provides a way to handle

complexity. All components have a common set of abstract management interfaces.

However, the downside of this approach is the complexity of the components. In

Chapter 3 Adaptive Software Architectures 57

practice, not all components need such a complex structure, and in the examples given

in (Herring, 2002) many of the control functions are in fact deprecated. Despite these

limitations, VSA does attempt to embody two important principles that help manage

complexity in dynamic systems. The first is the strict separation of control/management

from process/function. The second is local control – that is, the distribution of

control/management down through the structure.

3.7. Contract-oriented frameworks
The control-oriented frameworks discussed above focus on the monitoring and control

of components through the sensing and manipulation of control variables. Contract-

based frameworks, on the other hand, exercise control through the (dynamic)

specification of the relationships which components must follow. In the frameworks

discussed below, there are differences in the types of contract described. Some

contracts are compositional in that they define the valid configuration(s) of a

composite. Other contract-based frameworks view contracts as exercising control by

constraining the interactions between components. In this sense, contracts are both

structure-centric and quality-centric descriptions, as discussed at the beginning of this

chapter (Figure 3-1). Contracts can define both the existence of relationships (hence

structure), as well as the quality of those relationships. Some frameworks described

below, such as ConFract (Collet, Rousseau, Coupaye et al., 2005) and the framework

described in this thesis, have contracts that perform both these functions.

 As illustrated in Figure 3-9 below, there are two methods of defining and

controlling the quality of relationships. The first method is to control the interface of

the component involved in any association so that only behaviour acceptable to the

contract can occur over that interface. This common approach (as typified by Meyer’s

(1988) Design-by-Contract) characterises the non-functional properties of the

component interface irrespective of its actual relationships.

Figure 3-9: Aspects of contracts and methods of controlling interactions

Contracts

As defining existence
of associations

(structure-centric
description)

As defining type and
quality of interactions

(quality-centric
description)

Control of
Component

interface

Control of
Connectors

58 PART I Adaptation and Organisation

 The second method focuses on characterising and controlling the connectors rather

than characterising the components. This is the approach adopted in this thesis. Non-

functional relationships can always be reduced to an abstraction over functional

relationships. While we tend to think of a non-functional requirement as a property of

an entity (role, object, component, etc), it is always a requirement in relation to some

other entity (or entities). In terms of a contract, a non-functional property of a

relationship has both a requirement (obligation) and a state-of-fulfilment of that

obligation (performance). Non-functional properties can be viewed as abstractions

across functional interactions, even through many such properties (e.g. availability,

fault tolerance) may be invariant for all of a component’s relationships. While none of

the frameworks discussed in this literature review adopt this second method, we

highlight this distinction here as a point of contrast to our ROAD framework which is

described in the next part of the thesis.

3.7.1. ConFract – contracts for controlling composition and
behaviour

ConFract is a framework that uses contracts to create hierarchical component

compositions (Collet, 2001; Chang and Collet, 2005; Collet, Rousseau, Coupaye et al.,

2005). It is based on the Fractal component model (Bruneton, Coupaye and Stefani,

2002) which has the following main features:

• Composite components that provide a uniform view of the application at various

levels of abstraction

• Shared components to model resources and resource sharing while maintaining

component encapsulation

• Reflective capabilities to monitor the running system

• Reconfiguration capabilities to deploy and dynamically reconfigure the system

• Openness, in that almost everything is optional and can be extended.

From an external point of view, Fractal components are connected through server

(provided) and client (required) interfaces. A fractal component is formed from a

membrane and a content. The content is composed of other components. The

membrane embodies the control behaviour. In particular it can:

• intercept ingoing and outgoing operation invocations

• superimpose a control behaviour on a component’s sub-components

• provide an explicit and connected representation of component’s sub-components

Every external interface has an associated internal interface. Figure 3-10 below

illustrates a Fractal component made up of other Fractal components. The Copier

Chapter 3 Adaptive Software Architectures 59

component, contains Printer and Scanner components bound by contracted interfaces.

These contracts can be automatically generated from contract specifications, as

illustrated in the figure.

Figure 3-10: Fractal component and contracts (from (Collet, Rousseau, Coupaye et al.,

2005))

 Collet et al. (2005) point out that interface signatures alone are “insufficient to

capture and control the salient properties of an application”. They point to the need to

specify “extra-functional”10 aspects, some of which need to be verified at runtime.

ConFract allows behavioural constraints in the form of executable assertions to be

specified against interfaces and components. Contracts reify these specification

assertions and can be updated dynamically. A contract is “a document negotiated

between several parties, the responsibilities of which are clearly established for each

provision”. Contracts clearly identify the responsibilities among contract participants so

that “developers can precisely handle contract violations”.

10 We read this as meaning “non-functional”. Indeed, extra-functional is probably the better term to express
quality aspects because many of these aspects may have functional impacts, but we have chosen to adopt
the term non-functional in this thesis because of its common usage.

60 PART I Adaptation and Organisation

 In ConFract, the specifications made up of executable assertions are expressed in

CCL-J (based on OCL) and are categorised as Pre, Post, Invariant, Rely and

Guarantee. These assertions extend Meyer’s (Meyer, 1988) classic assertions for

interface contracts to include state during execution. Rely is a condition that a method

can rely on being true during execution. A method can Guarantee that a condition

remains true. Each assertion category can consist of zero or more clauses.

 As illustrated in Figure 3-10 above, a ConFract system has a number of different

types of contract, namely:

• Interface contracts are established on the connection point between a pair of

client and server interfaces.

• External composition contracts located on the external side of each component

membrane and express the usage and external behaviour rules of the component

• Internal composition contracts are located on the internal side of the composite

component membrane, and express the assembly and internal behaviour rules of

the implementation of the composite component.

In terms of a contract composition, components are either guarantors or beneficiaries.

If a contract violation occurs, the guarantor (often the contract controller of the

enclosing composite) attempts to mitigate the situation by reconfiguring its

components. Contracts are managed by contract controllers (CTCs) that are located on

the membrane of every component. CTCs react to events in other controllers – the

binding, content and life-cycle controllers – to formulate the optimal conditions for its

contracts.

 In ConFract the scope of a contract can be the whole component. ConFract

contracts are thus inherently multi-party, and include both “usage” (interface) and

“assembly and implementation” (composition) contracts. Composition contracts

explicitly express the composition rules / behaviour of a composite. ConFract external

contracts are component-centric. External composition contracts allow behaviour rules

to be applied to a component independent of its associations. The responsibility for

performance is not part of the ConFract contract itself (contracts only express

constraints), but is managed separately by the CTC in the component membrane. In

ConFract, the component definition (in terms of it external behaviour as defined by its

external composition contracts) is not a separate (role) entity to its internal composition

(as expressed by its internal composition contracts). Consequently, replacing a

component involves the ConFract system generating (if needed) a new specifications

and contracts appropriate to the new component. Indeed, the ConFract system is

dynamically built from such contract-based specifications.

Chapter 3 Adaptive Software Architectures 61

 In general, the ConFract system is a comprehensive approach to addressing both

functional composition and non-functional adaptation. This approach is based on the

dynamic creation of various types of contracts from constraint specifications on

interfaces and components. However, the complexities of expressing a component

composition in terms of constraints may make this approach difficult to apply in

practice. In ConFract, components can be changed by opening and closing contracts.

Component reconfiguration, as distinct from merely swapping a component, is made

possible by changing the specification(s). This specification is then used to generate

new contracts at configuration time. Runtime management utilises interception

mechanisms provided by the underlying Fractal component platform.

 Finally, to characterise ConFract in terms of the schema illustrated in Figure 3-9 of

the previous section, ConFract defines both the structure and quality of interactions.

However, because interaction control is enforced on the interfaces of the components,

the structural and quality aspects must be represented in separate contracts; that is,

respectively, the composition and interface contracts.

3.7.2. CASA – configuration selection based on application
contracts

Contract-based Adaptive Software Architecture (CASA) (Mukhija and Glinz, 2003;

Mukhija and Glinz, 2005b) provides a framework for enabling the development and

operation of autonomic applications. As such, the focus of CASA is on adapting to

changes in the execution environment, such as computational resources. We examine

CASA here because it also addresses changes in the (mobile) user’s context; a similar

domain to Aura (Sousa and Garlan, 2003). The key features of CASA are:

• Separation of the adaptation concerns of an application from its business

concerns

• A runtime system for dealing with the adaptation concerns

• Support for adaptation at various levels of an application

• A contract-based adaptation policy, facilitating changes in the adaptation policy

at runtime.

CASA identifies a number of adaptation techniques that can be classified according to

the level where the adaptation takes place. These are

• Dynamic change in lower-level services

• Dynamic weaving and unweaving of aspects

• Dynamic recomposition of application components

• Dynamic change in application attributes.

62 PART I Adaptation and Organisation

This schema highlights the distinction between the application and its execution

environment. It also extends the limited view of architecture; namely, as just

configurations of components and connectors to take account of concerns such as

security that crosscuts the core functionality (similar to the SMs (Cheng, Huang, Garlan

et al., 2004) discussed above).

 The adaptation policy for an application is defined by an “application contract”.

These contracts are external to the application and can be changed at runtime. They

define the contexts of interest to the application and a corresponding configuration.

Each configuration specifies the resource requirements of the configuration, the

components and aspects of the configuration, the callback methods that perform the

reconfiguration, and a list of the lower level services related to the configuration.

 Every node hosting an autonomic application runs an instance of the CASA

Runtime System (CRS) (Mukhija and Glinz, 2005a). As shown in Figure 3-11 below,

the CRS monitors the execution environment on behalf of the application, and makes

any changes needed in the application. Every time the CRS detects a change in the

execution environment (step 1) it evaluates the application contracts of the running

applications with respect to the changed state of the execution environment (step 2).

The CRS carries out any adaptation needed in the affected applications, in accordance

with the adaptation policies specified in the respective application contracts (step 3).

Figure 3-11: Adaptation steps in CASA Framework (from (Mukhija and Glinz, 2005a))

 Depending on the current state of the execution environment (contextual

information and resources), the appropriate configuration from the application contract

is selected and activated by the CRS. Adaptive behaviour in CASA therefore consists

of the selection of the first configuration to match the context requirements on a

Chapter 3 Adaptive Software Architectures 63

predefined and prioritised list of configurations in the application contract. These

contracts can (only) be changed manually by the human user/operator. This provides a

form of supervisory control of the system.

 CASA does not provide mechanisms for monitoring of resources itself, but relies

on the third party middleware. Only computational resources are monitored, rather than

application behaviour or domain output. Monitoring of the user context is described at

a very general level, and it is not apparent that this has been implemented. Nor is it

clear that complex collaborations of a number of applications can be represented or

implemented. Although the work on CASA describes a broad vision, implementation at

the time of writing appears limited to configuration selection and swapping in a simple

prototype.In terms of our schema, illustrated in Figure 3-9, CASA contracts do not

define the internal structure of an application, but are rather ‘contracts-for-use’ that

have associated predefined configurations. The interactions controlled by the contract

are limited to external interactions between the application and its environment (that

may include other CASA applications).

3.8. Summary of framework characteristics
Table 3-1 below summarises the adaptive architectural frameworks reviewed above,

according to the characteristic identified in Section 3.3 above. Characteristics marked

with a tick are clearly addressed, or can be clearly inferred, from the work reviewed.

Characteristics marked with a cross x are not addressed and it is difficult to see how the

framework could support such a feature. Characteristics marked with a tilde ~ are

partially supported, or else they are not addressed yet it can be reasonably inferred that

they could be supported by the framework.

 To be ontogenically adaptive, a framework must provide the capability for

structural reconfiguration and regulation of interactions. ArchJava has not been

included in the summary because it is a language extension rather than a framework

and, as such, does not address management concerns. The Rainbow and ConFract

frameworks, in particular, go some way towards meeting these requirements.

However, even with these frameworks, much work needs to be done if a

comprehensive solution is to be developed. For example, none of the frameworks

comprehensively address how the integrity of the system is maintained when

components are swapped. When is it safe to swap a component? How is state

preserved? How are the costs of reconfiguration evaluated so that decisions can be

made on the cost versus benefits of restructuring? How is instability (e.g. feedback

oscillations) dampened when restructuring or regulating the system? Some frameworks

64 PART I Adaptation and Organisation

also lack desirable characteristics such as a clear separation between management and

functional entities. Even though a number of frameworks encapsulate these in separate

entities, inter-dependencies between management and functional entities mean that the

management structure cannot be superimposed on blackbox components. Frameworks

that control the quality of interaction do not incorporate formal techniques for ensuring

the consistency of the structure.

 In Part 2 of the thesis, we introduce the ROAD framework and show how it meets

the requirements of ontogenic adaptation. For comparison, the characteristics of our

ROAD framework described in this thesis are included in the table. In Part 3, Chapter

11, we evaluate ROAD in detail with respect to the characteristics in the table.

Chapter 3 Adaptive Software Architectures 65

Table 3-1: Summary of the characteristics of adaptive software frameworks

G
eo

rg
ia

di
s

Pl
as

tik

R
ai

nb
ow

 &
 S

M
s

(G
ar

la
n

, C
he

ng
)

R
ai

nb
ow

(H

ua
ng

)

A
ur

a

V
ia

bl
e

Sy
st

em

A
rc

hi
te

ct
ur

e

C
on

Fr
ac

t

C
A

SA

R
O

A
D

1. Configuration
1.1. Reconfiguration possible at runtime. x ~ a x ~ b
1.2. Declarative composition at runtime. x x x x x ~ ~
1.3. Functionally recursive structure x x ~c ~ ~ x
1.4. Non-functional restructuring supported ~ x ~ ~ ~ x
1.5. Elements can be substituted ~
1.6. Supports heterogeneous components x ~ x x d
1.7. Blind communication x e x x x x x x x
1.8. Partial instantiation possible x x x x x
1.9. Formal composition ~f ~ ~ x x x
2. Regulation g
2.1. Non-functional regulation possible. x ~
2.2. Control dynamics supported. x x x x ~ x x ~
2.3. Utility can be defined arbitrarily x ~ h ~ x
2.4. Utility requirements changed dynamically x x x ~ ~ x
2.5. Type of utility changed dynamically. x ~ x ~ ~ ~ ~ i
2.6. Multi-dimensional utility supported. x ~ ~
3. Management
3.1. Can determine the need for reconfiguration x ~ ~ ~ ~
3.2. Management as separate entity. x ~ c x
3.3. Management exogenous x ~ j x x x
3.4. Management distributed ~ k x ~ l x
3.5. Management structure not subject to single
point failure

 x x x x x ~ x

3.6. Separate management structure. ~ m ~
3.7. Management can find /select entities x ~ n ~ ~ ~ ~ o ~
3.8. Management mechanisms superimposed ~ p x x x x x x x
3.9. Management is updatable. x ~ ~ ~ x x x ~
3.10. Management is substitutable. x ~ ~ ~ x x x
3.11. Supervisory control possible. x x ~ x ~
3.12. Costs of reconfiguration estimable. x x x x ~ x x x
4. Other
4.1. Implementation is apparent. ~

a Only single component replacement or regulation
b Contracts can be updated manually at runtime
c Claims recursion is possible but not evidenced in discussion or examples
d Subject to creating an ‘application contract’; external definition of functionality and performance
characteristics
e Although it might be argued that the component implementations inside management wrappers are blind
f The Constraint Evaluator claims to be able to check compositional rules but examples only illustrate QoS
g Claims this can be provided by third party
h Design time only
i Not without redefining and deploying the component
j Strategy descriptions are component specific, thus endogenous
k Centralised in one ADL description, distributed runtime
l Distributed description, centralised action
m Separate management communication channel but unstructured broadcast
n Claims to support selection but mechanisms are not described
o Selection from developer defined list of configurations
p Only if components are Darwin compliant

66

Part II

The ROAD
Meta-model

4

Role-Oriented Adaptive Design

In the previous chapter we reviewed architectural frameworks for building runtime

adaptive systems. These frameworks facilitate the construction of applications from

loosely coupled elements that are then dynamically regulated and reconfigured to

meet variable environments or changing goals. This part of the thesis, Part 2,

introduces our Role-Oriented Adaptive Design (ROAD) framework and describes

the framework at a conceptual level. The description of the implementation of this

meta-model is discussed in the following Part 3.

 Part 2 is structured as follows. This chapter gives an overview of the basic

concepts in ROAD, and introduces an expository example that will be used

throughout the subsequent chapters to illustrate the features of the ROAD

framework. The rest of the chapters in this part of the thesis then examine each of

these concepts in more detail.

4.1. Basic ROAD concepts
The basic elements in the ROAD adaptive framework are roles, players, contracts,

organisers and self-managed composites. In the following overview, ROAD’s

characteristics are described in terms of the features of adaptive architectural

frameworks summarised in Table 3-1 of the previous chapter. The specific

characteristics listed in that table are referenced below by a number in square

brackets [x.y] where x is one of the subcategories 1. Configuration, 2. Regulation,

or 3. Management, and y is a label for the adaptive characteristic in the

subcategory.

Chapter 4 Role-Oriented Adaptive Design 69

 In ROAD, software applications are viewed as organisations — goal-driven

networks of roles bound together by contracts. There is a radical separation of roles

from the entities that play those roles. Roles can be played by various players

(objects, components, services, agents, human operators, etc.) [1.6], in much the

same way as a role in a business structure may be played by various employees,

departments, or outsourced to external organisations. Similarly, roles in an adaptive

ROAD application can be played by players within the organisation, or by players

outside the application’s immediate scope of control. Players can be dynamically

bound/unbound to roles [1.5] as demands on the application change, as the players’

performance varies, or as the environment changes. A player may play more than

one role, but at any point in time an instance of a role is always the responsibility

of a single player (there can be many instances of the same role type in an

organisation [1.4]). Roles may be temporarily unfilled by players [1.8]. In ROAD,

these roles are first-class runtime entities that can be played by various players at

different times. Roles, as performed by their players, satisfy their responsibilities to

the organisation as a whole. Functional roles (as distinct from the organiser roles

discussed below) are focused on first-order goals; that is, on achieving the desired

application-domain output. Functional roles and their players constitute the

process, as opposed to the control, of the system. The difference between a role and

a player is that functional roles define an abstract function or a ‘position’ within an

organisation, while role-players “do the work”. This is in clear contrast to the usual

concept of roles in object-oriented modelling, where a role is a descriptor for one

end of a relationship. In Chapter 5 we examine in more detail, roles, players and

their relationship.

 Contracts associate two roles. They also monitor and regulate interactions

between the roles. As all roles (as opposed to players) are internal to the

organisation, ROAD contracts are also internal to the organisation, unlike inter-

organisational service-level agreements. Like roles, instances of contracts are

runtime entities. All runtime communication between functional players bound to

the organisation is via contracted roles. If necessary, contracts intercept the

communications between roles. Contracts define the mutual obligations of the

participant roles in an organisational context. They define what interactions are

permissible or required by the participant roles, and can be used to enforce

sequences of interactions. Contracts can also be used to set arbitrary performance

conditions on the roles’ interactions [2.3-2.6], and monitor those interactions for

compliance to those conditions [2.1]. Contracts thus encapsulate both the

70 PART II ROAD Meta-model

coordination and the performance management of interactions. Figure 4-1 below

illustrates the relationships between roles, players and contracts. Contracts are

further discussed in Chapter 6.

Figure 4-1: Roles, contracts and organisers from an organisation layer separate from
players

 Organisers [3.2] create and destroy roles. They make and break the bindings

between organisational roles and players (player selection), and create and revoke

the contracts between the roles. They can thereby create various configurations of

roles and players [1.1]. Organisers set performance requirements for the contracts

they control, and receive performance information from those contracts. Organisers

have reconfiguration strategies they can employ if they detect under-performance

in the composite they control [3.1]. Organisers are themselves a role-player pair, so

that various role-players (e.g. Player Z in Figure 4-1) can be dynamically bound to

the organiser role [3.9-3.11]. These organiser role-players may be of varying

capability. In short, organisers provide the adaptivity to the application by

managing the indirection of association and instantiation (as discussed in Chapter

2). Organisers, along with the contracts and roles that they control, can be viewed

as a management layer that composes and controls the interaction of the functional

role-players [3.6]. This management layer can be superimposed on to pre-existing

players/components [3.3, 3.6, 3.8].

 Each organiser is responsible for the configuration of a set of roles and

contracts. We call such configurations self-managed composites. Each self-

management composite has an interface (membrane) that defines its potential

interactions with the external environment, and exactly one organiser role [3.4] that

Player X Player
Layer

RoleA

Organiser
Role

Organisation
Layer

Player Y Player Z

RoleB

Organiser creates and
controls contracts

between roles & role-
player bindings

RoleC

Contracts

Functional
roles

Chapter 4 Role-Oriented Adaptive Design 71

manages it internally. We call these regulated clusters of roles “self-managed

composites” because each composite attempts to maintain a homeostatic

relationship with its environment and other composites. In terms of a management

analogy, a self-managed composite in a business organisation would be a

department (e.g. manufacturing department).

 Such managed composites are themselves role-players that perform definable

domain functions (roles) within higher-level composites [1.3]. A role-based

organisation is built from a recursive structure of self-managed composites. This

structure is coordinated through a network that connects the organiser roles of each

of the composites. The network of organiser roles and the contracts they control

constitute a regulatory management-system. Organisers, self-managed composites

and the management system are discussed in detail in Chapter 7.

4.2. Expository example
To illustrate how role-based coordination can be used to create adaptive software

systems, we will use the example of a mixed-initiative (Horvitz, 1999) automated

manufacturing production system. Let us consider a highly simplified

manufacturing department that makes widgets. This department has an

organisational structure consisting of a number of different roles that perform

different functions (the rounded rectangles in Figure 4-2 below). These roles are

Foreman, ThingyMaker, DooverMaker and Assembler (who assembles thingies

and doovers into widgets). The Foreman’s role is to supervise ThingyMakers,

DooverMakers and Assemblers and to allocate work to them. The

WidgetDepartment also has a manager role (an organiser) that is responsible for

creating roles in the department, for creating the associations between the various

functional roles, and for assigning entities to play those roles. The

WidgetDepartment is, therefore, a composite of these roles and the players who

perform them.

 Contracts associate roles. The only way two roles can communicate is via a

contract. For example, the mutual obligations of roles of type Foreman and

ThingyMaker are captured in a Foreman-ThingyMaker contract type. As shown in

Figure 4-2, the control relationship between a Foreman and a ThingyMaker

conforms to a Supervisor-Subordinate pattern, with the Foreman being the

supervisor of the subordinate ThingyMaker. In ROAD this reuse of control patterns

is implemented by having the Foreman-ThingyMaker contract class inherit its

interaction patterns from an abstract Supervisor-Subordinate contract. As systems

72 PART II ROAD Meta-model

become more open, the components, agents or services that play roles are not

necessarily well-tested or well-trusted. Interactions between roles (as player

proxies) therefore need to be actively controlled. The runtime control that a ROAD

contract imposes is a way of ensuring that interactions between the roles are

appropriate to the organisational requirements, and that the players bound to the

organisation are well-behaved.

Figure 4-2: Organisational chart of Widget Department

 The organisational chart in Figure 4-2 is of an abstract organisation, in that it

shows classes and class relationships, rather than instances of roles, contracts or

players. When a composite organisation is instantiated, instances of the roles and

contracts are created, and player instances are bound to (some or all) of those role

instances. A diagram of an instantiated WidgetDepatment (wd) is shown in Figure

4-3 below.

 The roles in our WidgetDepartment can be performed by a variety of

heterogeneous players. Players can be software objects, components, agents,

external services, machine controllers, or humans interacting with the application

through a user interface. Or players can themselves be composites of roles and

players. In our example, the thingies are produced by machines that interact with

the application through controller components; doovers are outsourced from an

external supplier via a Web Service interface; assembler players are interactive UI

Production manager

Thingy
Maker

Foreman

Supervisor

Subordinate

Doover
Maker

Peer

Assembler

Peer

Subordinate Subordinate

Supervisor

plays

WidgetMaker

Widget Department

Manufacturing
Division

Self-managed
Composites

Functional
role type

Contract
type

wdo: Widget
DeptOrganiser

Chapter 4 Role-Oriented Adaptive Design 73

components that require human employees, who do the physical assembly, to

record their work; and the foreman is an automatic work scheduling component

that has been provided by the Company’s legacy scheduling software. This

WidgetDepartment (wd) is itself a role-player that plays the WidgetMaker role

instance (wm) within the broader ManufacturingDivision of the Company. The

WidgetDepartment composite-player only interacts at a functional level with its

WidgetMaker role in this context (blind communication [1.7]). Note that, as a

player, the WidgetDepartment is a fully separable component from the enclosing

Manufacturing Division composite, and might always be replaced by another

player that can fulfil the WidgetMaker role.

 In Figure 4-3, the functional and non-functional requirements of the

WidgetMaker role are defined in contract C1. The WidgetDepartment’s organiser-

role (wdo), that is played by op1, creates, monitors and controls the contracts (C2a,

C2b, C3, …) between functional roles (f, tm1, tm2, a1, …), and binds players (p1,

p2, p3, …) to those roles.

Figure 4-3: Exploded view of nested self-managed composites (not all roles and

players shown)

Management
interface

mdo:
Manufacturing

DivisionOrganiser

wdo: Widget
DeptOrganiser

pm: Production
Manager

tm1:
ThingyMaker

…

…

C2b

C2a

Organiser
role instance

Functional
role instance

Contract
instance

Self-managed
comp. player

tm2:
ThingyMaker

WidgetDepartment
composite player

requirements
& constraints

Functional
interface

C1 wm:
Widget
Maker

<<player>>
wd:Widget
Department

Management
interface

p3

Simple player
(object, agent,
etc…)

op1

p2

f:Foreman

performance
data

p5
p4

a1:
Assembler

C3

ManufacturingDivision
composite player

Plays

p1

74 PART II ROAD Meta-model

 Players will vary in their capability to perform a role. Capability has both

functional and non-functional aspects. To be able to perform the role at all, the

player must meet the functional requirements of the role; that is, it must be able to

meet the goals and perform the tasks allocated to the role. But the player will also

have to meet non-functional requirements such as speed, accuracy, reliability and

so on. In conventional object-oriented design, all objects of the same type are

treated as having identical capability and behaviour. However, in a more open

system such as our WidgetDepartment, we cannot assume that all players of, say,

the role ThingyMaker will have the same capabilities. For example, some types of

ThingyMaker machine may be faster, more accurate, or more costly than others.

Even if the machine-players are of the same type, instances of that type may be

running in different contexts that affect their relative performance with respect to

their roles. One player may be better connected, better resourced, better

maintained, available more often, etc. than other players of the same type.

 An adaptive system must respond to changes in the requirements of the

system, or changes in the environment, or both. The Widget Department needs to

be able to cope both with changes in the demand for its widgets, and with changes

in the capabilities/availability of its players. For example, orders flowing into the

department to make new widgets might increase, such that they exceed the capacity

of the department to manufacture them. Or, one of the ThingyMaker players may

become unavailable, unreliable or too costly. It follows that there must be a

representation of the non-functional requirements of each of the roles in the Widget

Department, and a way of measuring whether or not the players of those roles are

meeting those requirements.

 As a role-based organisation structure, the Widget Department has two basic

adaptive strategies available. Firstly, it can restructure the relationships between the

roles in the Department. For example, an additional ThingyMaker role (and player)

could be added to cope with an increase in demand as shown in Figure 4-3 (i.e.

non-functional restructuring [1.4]). The second strategy is to replace a player with

an alternative player that better matches the required capability (e.g. player p5). For

example, the production of thingy parts might be outsourced to a third-party

service. The appropriateness of these adaptation strategies needs to be evaluated in

order to mitigate any gap between required and actual performance. The organiser

role must also have a means of enacting that strategy.

Chapter 4 Role-Oriented Adaptive Design 75

 A ROAD application is built from a recursive structure of self-managed

composites. Apart from the functional interactions that flow through contract and

roles, this structure is coordinated through a network that connects the organiser

roles of each of the composites. This network of organiser roles constitutes a

management-system that is separate from the functional system. In our

manufacturing business, information on non-functional requirements, capacity and

constraints (e.g. financial constraints) flows over this management network.

Depending on the capability of organiser players, this information can be used to

plan changes to the system (VSM model’s Adaptation and Planning subsystem

(System 4) as discussed in Chapter 2).

* * * * *
In summary, there are a number of capabilities that a role-based system needs if it

is to be adaptive at runtime to both changes in requirements and to changes in the

operating environment. These capabilities include the ability to represent

requirements; to measure the performance relative to those requirements; to

evaluate strategies for adaptation; to restructure relationships between roles; to

select appropriate players for those roles; and the ability to control the interactions

between players via those roles. In the following chapters we will show how the

ROAD framework meets these required capabilities.

5

Roles and Players

In its general usage the concept of a role defines the relationships of an individual

within a particular social context (Steimann, 2000). In this thesis, we are concerned

with software systems in which social contexts are intentionally designed and

structured. As discussed in Chapter 2, we call such contexts organisations, where

organisation refers to both the relationship of roles in the system, and the processes

that maintain the viability of these relationships in response to changing goals and

changing environments. Roles are the nodes of designed organisational structures.

 In this chapter we define the characteristics of ROAD organisational roles and

players, and contrast ROAD roles with other views of roles found in the literature

on software modelling and design. The chapter provides a rationale for our

approach to roles, and is structured as follows. Section 5.2 is a brief discussion of

the various conceptions of roles in software development methodologies. In

particular, we examine whether methodologies use roles merely as an

analysis/design concept, or whether the role is reified as an implementation entity.

We argue that to create adaptive role-based software organisations, roles need to be

reified. Section 5.3 addresses the following questions. If roles are implementation

entities, to what degree are roles and their players separate? Do roles have an

independent identity? Can a role exist independently from the role player? We will

briefly examine the various methodological responses to these questions, and point

to the need to radically separate roles from players in organisational structures. We

propose that role identity should be organisation-centric, rather than player-centric.

In Section 5.4 we define the essential properties of both roles and players within an

adaptive organisation. If we want to design and implement an explicit

Chapter 5 Roles and Players 77

organisational structure, what properties will be needed in the roles that make up

that structure? Consequently, what general properties will be needed by the players

who play such organisational roles? We then introduce some issues that arise from

the radical separation of roles and players. The subsequent sections of the chapter

address these issues. In Section 5.5 we propose a novel conceptual framework

based on the autonomy permitted by the role and the capability of the player.

Players in different roles within a software organisation may be very heterogeneous

(objects, components, services, agents or humans), and have very different degrees

of autonomy and capability. We then examine various implementation strategies

for defining role-players with various levels of autonomy. Possible solutions to this

problem are discussed and related to object-oriented and agent-oriented

approaches. Section 5.6 proposes that players should use “blind communication” in

order to make organisations more adaptable through maintaining the separation of

structure and process. Section 5.7 discusses the problem of the preservation of state

in role-based organisations.

5.1. Roles as design and implementation entities
Roles are a recurring concept in both object-oriented and agent-oriented

methodologies, not to mention data-modeling (Steimann, 2005). In these

approaches roles may appear as concepts at the analysis and design stages, but are

not necessarily implementation entities as they are in ROAD.

 In conventional object-oriented methods, roles have figured as an annotation

on the relationship between objects. In UML, roles are a descriptor for the ends of

an association between classes (the concept of role has been subsumed by the

concept of ConnectorEnd in UML 2.0 (Object Management Group, 2004)). In

some methods, such as OOram (Reenskaug, 1996), roles are central concepts to the

analysis and design. In OOram roles are nodes in an interaction structure (role-

model). These role-models can be based on any suitable separation of concerns.

Responsibility-driven design (RDD) also focuses on collaborations between roles,

but such contracts between roles are seen as “really meaningful only in the

programmer's mind” (Wirfs-Brock and McKean, 2002). In such approaches, roles

are used in the modelling and to inform the design, but disappear as entities during

implementation.

 Other approaches based on role and associative modelling define roles as first-

class design and implementation entities (Kendall, 1999a; Kristensen and Osterbye,

1996; Lee and Bae, 2002; Fowler, 1997; Bäumer, Riehle, Siberski et al., 2000).

78 PART II ROAD Meta-model

Fowler (1997) discusses the implementation of roles in object-oriented design

using a variety of object-oriented patterns. Kendall (1999b) has shown how

program aspects can be used to introduce role-behaviour to objects. In Kendall’s

approach, roles are encapsulated in aspects that are woven into the class structure.

Such approaches see roles as encapsulated implementation entities, but they vary as

to whether roles can exist independently from the objects that play them. In

common with the approach in this thesis, a number of object-oriented frameworks

and languages that treat roles as first class entities have been developed (Baldoni,

Boella and van der Torre, 2005b; Colman and Han, 2005a; Herrmann, 2002).

These are discussed in more detail below.

 Roles also figure in a number of agent-oriented approaches (Juan, Pearce and

Sterling, 2002; Ferber and Gutknecht, 1998; Odell, Parunak, Brueckner et al.,

2003; Zambonelli, Jennings and Wooldridge, 2000). Gaia in particular,

(Zambonelli, Jennings and Wooldridge, 2003) extends the concept of a role model

to an organisational model. Like some object-oriented approaches, roles are not an

implementation entity. For example, in Gaia role models are developed at the

analysis and architectural design stages, but roles are mapped to agents (not

necessarily on a one-to-one basis) during the detailed design stage. Other agent-

based models (Odell, Parunak, Brueckner et al., 2004) see roles as a key modelling

concept but, being implementation-independent, these models give no indication of

how these roles are to be realised. In general, if an agent-oriented methodology

only has agents available as implementation entities, then it will lack the

expressiveness to explicitly represent roles in an organisational structure.

 As our aim is to create explicit organisational structures at the code level, we

require roles that can be created and manipulated as implementation entities.

5.2. Two perspectives on roles – player and
organisation

Kristensen (1996) defines the characteristics of roles in object-oriented modelling.

These include:

• Dependency: a role cannot exist without an object

• Identity: an object and its role have the one identity

• Visibility: the visibility and accessibility of the object (a.k.a. player) is

restricted by the role

• Dynamicity: a role may be added or removed during the lifetime of an object

Chapter 5 Roles and Players 79

• Multiplicity: several instances of a role may exist for an object at the same

time

• Abstractivity: roles can be classified and organised into generalisation and

aggregation hierarchies.

The above characterisation of a role has been widely adopted in the object-oriented

literature, if not object-oriented practice. Roles can be implemented as runtime

entities and yet have no independent identity or separate existence from their

players. For example, Kendall (1999a) and Kristensen (1996) encapsulate roles as

implementation entities but allow them no existence separate to the objects to

which they are bound. While roles exist as a class, they can only be instantiated

when bound to an object. Steimann (2000) provides a useful overview of

approaches where roles are seen as adjuncts to object instances. Roles are seen as

clusters of extrinsic members of an object. Such roles are carriers of role-specific

state and behaviour but do not have an identity.

 All the above approaches are object-centric or player-centric. The object is

seen as the stable entity to which transient roles are attached. The identity of the

role is an adjunct to the identity of the object. The role of an object is not an

independent entity, but its appearance in a given context (Steimann, 2000).

 An alternative perspective, which is adopted in this thesis as well as in

Baldoni (2005b) and Herrmann (2002), is to look at roles from an organisation-

centric viewpoint. From this perspective, a role’s identity and existence derives

from the organisation that defines the roles and associations – not from the player

itself. This dependency of a role on a group is also apparent in some agent-oriented

approaches (Odell, Nodine and Levy, 2005). Roles are the more stable entity

within the organisational structure and transient players are attached to these roles.

A role instance may be played by different players at different times (although not

simultaneously). In an organisation, there is generally no restriction on a single

player playing multiple roles. These two perspectives are illustrated in Figure 5-1

below.

80 PART II ROAD Meta-model

Figure 5-1: Player-centric and Organisation-centric perspectives on roles

 The organisation-centric view of roles accords more with the characteristics

of roles in human organisations, such as a bureaucracy or a business. We call such

roles functional roles, as they are part of the domain process (as distinct from

management) of the organisation. The network of these roles is the basis of the

organisational structure. If functional roles are nodes in an organisational structure,

then a role may have associations a number of other roles of various role-types. A

functional role may therefore consist of a number of interfaces – one for each of its

associations with other roles. This is a different view from a conventional object-

oriented view of a role: as a descriptor for one end of a single association1.

 A functional role instance is a “position” to be filled by a player (Odell,

Nodine and Levy, 2005). There may be multiple role instances of the same type

within an organisation. Role instances may be temporarily unassigned to players.

For example, if an employee (player) resigns from their role as Production

Manager within a manufacturing business, the role does not cease to exist. That

position (role) within the company structure may be temporarily unassigned, but

the company may continue to function viably in the short term. Orders can still be

taken, current work orders still be manufactured, finished goods can still be

shipped, accounts can still be processed and so on. Nor does the identity of the role

depend on the identity of the player. From the organisation’s point of view it does

not matter whether employee John Doe or Jane Smith performs the role of

Production Manager as long as they both have sufficient capability. In a viable

organisation the role model (organisational structure) is not just a design concept

R2
R1

Player
1

Role1

P1
P2

Role2

resource

R3 Player acquires
role(s)

Role played
by player

Potential
player

Organisation as a
Network of roles Role provides

extrinsic interface

Player has
intrinsic
interface

Player only
communicates

via role
Organisation-centric view of roles Player-centric view of roles

 ...

Chapter 5 Roles and Players 81

that helps structure the relationships between employees (players). It is also a set of

relationships between roles that is maintained and manipulated (to some degree)

independently from the players that are assigned to those roles. The ability to

dynamically bind different players to a role gives the organisation a degree of

adaptability in meeting changing goals and environments.

 Organisational roles therefore can be thought of as having a number of states

in relation to the binding with a player. An instance of a role can either be assigned

a player or left unassigned. As Odell et al. (2003) point out, the relationship

between a role and an assigned agent may also be in an active or suspended state

(e.g. our Production Manager has gone to lunch and although she is not active in

her role, she still occupies that position).

 To summarise the characteristics of functional roles within an organisation,

Kristensen’s characteristics of Dependency and Identity do not hold (the other

characteristics are still applicable). We can modify Kristensen’s characteristics of

roles as follows:

• Existence independent of player: Role instances in an organisation do not

depend on players for their existence. They depend on the organisation for

their existence.

• Independent identity: Role instances have an organisational identity that is

independent from their players even though the role and player act as a unity

within the organisation.

The separation of organisational roles from the entities that play them, allows the

definition of abstract organisational structures that are independent of particular

players. Such a structure in a human organisation would be described, for example,

in a company’s organisational chart where the nodes are the roles in the company

and the arcs are the authority relationships. However, the radical separation of roles

from role-players introduces the problems of how to define the dividing line

between extrinsic (role) and intrinsic (player) properties in the combined role

playing entity, and how to preserve the integrity of the organisation’s processes

when players are swapped. We address these issues in the following sections.

1 ROAD does characterise the ends of associations between functional roles as “performative” roles.
However, because these roles are properties of the functional role-role association, we discuss them in
the next chapter on contracts.

82 PART II ROAD Meta-model

5.3. The properties of roles and players in adaptable
organisations

In ROAD, we conceive of the role as expressing a function that serves some

purpose in the organisation. It defines what the role-player needs to do at some

level of abstraction, and defines the provided and required relationships with other

roles. It may also define a relationship to tools and resources. The player, on the

other hand, initiates actions in line with its capability to perform the defined role.

The player has intrinsic properties that gives it this capability. This concept of the

intrinsic nature of player capability is common to both object-oriented (e.g. the

“core object” in (Kristensen and Osterbye, 1996)), and agent-oriented (e.g. “agent

physical classifier” in (Odell, Nodine and Levy, 2005)) approaches.

 Let us illustrate the separation of properties between a role and a role player

with an example from an organisation made up of people – a coffee shop business

that has a role of coffee-maker2. The organisational context (the coffee-shop

business) of this role is illustrated in Figure 5-2 below

Figure 5-2: Organisational Chart with players

 The coffee-maker role might be defined as follows. The goal of the coffee-

maker role is to make quality coffee to a certain standard within certain time

constraints, in response to requests from waiting staff. The role defines work

instructions for preparing the coffee to the business’ standard. The role also gives

access to resources such as the expresso machine and ingredients, and it defines

2 We temporarily depart from our Widget Department example, because the author knows more about
making coffee than he knows about making thingies or widgets.

Café
manager

Waiter 2

Shift
manager

Supervisor

Subordinate

Waiter 1
Coffee
Maker

Subordinate
Subordinate

Supervisor

Organisation
boundary

Peer PeerPeer Peer

P4

P1

P3P2

Chapter 5 Roles and Players 83

functional relationships with other roles in terms of what is provided and required.

It also defines authority relationships with other roles in the business. For example,

the coffee-maker is subordinate to the shift manager, peer to the waiting staff and

so on. These authority relationships define the valid types of control

communication that can pass between actors playing the respective roles (e.g.

unlike a shift manager, a waiter cannot tell a coffee maker to finish their shift). A

role has (explicitly or implicitly) a “position description” that describes the

capabilities needed of a player assigned that role. In order to effectively

play the role of coffee-maker, an employee (or rather a person playing the role of

employee which is itself a generalisation of the coffee-maker role) needs to be able

to follow work instructions, use the tools provided to transform the ingredients as

required, and communicate with other role players following the conventions

imposed by the authority relationships between the role types.

 In general, an organisational role has the following properties.

• The function of the role expressed in terms of purpose, system-state, or

process descriptions (depending on how detailed the level of prescription in

the role and how much autonomy the player is able to exercise).

• Performance requirements for executing its functions are a property of the

relationship of the role with its enclosing organisation, rather than an

essential property of the role itself. Such performance criteria are set by the

organisation. Actual performance of a role is always an externally measured

property of an assigned role (player-role pair) because different players may

have varying capability in performing the role. As performance of a role-

player pair is always in relation to its organisation, it is therefore appropriate

to represent performance as the property of a relationship with the

organisation, perhaps as represented by other roles in that organisation. In

our ROAD framework, the performance level with respect to non-functional

requirements is recorded in contracts that associate roles (as described in the

next chapter).

• Interaction protocols and authority relationships (power, expectations and

obligations) with respect to other roles within the organisation and with

external entities with which the organisation has associations.

• Access to, and restrictions on, resources controlled or owned by the

organisation.

84 PART II ROAD Meta-model

The above properties are fundamentally properties of the role’s relationship with its

organisation, i.e. its composite, other roles, and resources in the organisation. The

role description is an aggregation of the properties derived from its relationships.

From the perspective of a role player, this aggregate description is a definition of

the knowledge and skills required in a player to enable performance of the role

function. This is an interface definition with both functional and non-functional

requirements. A role player needs to be able to execute the function defined in this

interface at the specified level of performance and while meeting any other non-

functional requirements it defines.

 A role and its player act as a unity within the organisation, even though roles

within an organisation have an existence and identity independent from their

players. If we separate functional roles from the players who play them, what

properties are ascribed to the role and what are the properties of the player? In

particular, if we are to implement roles as first-class entities in a runtime

organisation, a number of issues arise from the radical separation of roles and

players. These issues relate to the division of responsibility between roles and

players, namely:

• What level of autonomy do players have in fulfilling their role? Do roles

“do” anything?

• Does knowledge of the organisational structure reside in the role, player or

both?

• Are the roles or are the players responsible for maintaining state within the

organisation?

 The following sections discuss these issues and various strategies for the

implementation of roles. The purpose of this discussion is to evaluate some of the

alternative ways organisational roles might be implemented, in order to provide a

rationale for the way roles have been implemented in ROAD. In particular, we will

(where appropriate) illustrate these issues by comparing and contrasting how they

have been implemented in three different approaches to creating role-oriented

software organisations. These are powerJava (Baldoni, Boella and van der Torre,

2005c; Baldoni, Boella and van der Torre, 2005b), ObjectTeams (Herrmann, 2002;

Herrmann, 2005), and our Role-Oriented Adaptive Design (ROAD) framework.

Chapter 5 Roles and Players 85

5.4. Levels of player autonomy
Complex systems can comprise heterogeneous players with varying capabilities.

Such players operationalise the requirements defined in the roles. The level of

operational detail at which these requirements are expressed may vary depending

on the amount of autonomy that the organisation allows the player, and

consequently on the capability of the player to act with some appropriate level of

autonomy. Returning to our example of a coffee-maker, the work instructions for

making coffee may vary in terms of their level of detail. Inexperienced coffee-

makers may require detailed instructions on how to make a cup of coffee, while an

experienced and capable coffee-maker may not need to follow instructions defined

by the role but may just be given a system-state (“strong cappuccino”). This

experienced coffee-maker may alter the process depending on the inputs (“the

coffee-maker perceives the beans to be a darker roast than usual”).

 As can be seen from the above example, the granularity of the descriptions of

the task contained in a role may vary depending on the autonomy granted to the

player. Intentional action can be described at various levels of abstraction on a

means-end (intentional) hierarchy as shown in Figure 5-3 below.

Figure 5-3: Shifting boundary between roles and players on an intentional hierarchy

 In an intentional hierarchy, goals are operationalised at successively lower

levels of abstraction, while the purpose of a function at one level of abstraction can

be determined by referring to higher levels of abstraction. At its most abstract

level, the role to be performed may be described by a purpose or goal in the

Purpose or goal of role
(desired state of the role’s environment)

Desired state of the system

Process to achieve desired state

Execution of process

Op
er

ati
on

ali
sa

tio
n

Go
al

ab
str

ac
tio

n

D
ef

in
ed

 b
y

ro
le

P
ro

ce
ss

A

ut
on

om
y

N
o

A
ut

on
om

y

In
te

nt
io

na
l

A
ut

on
om

y

S
ta

te

A
ut

on
om

yPlayer always executes the process

HOW

WHY

86 PART II ROAD Meta-model

environment external to the role or organisation (“keep the customer’s happy by

making good coffee”). At a more detailed level, the means to achieving the goal of

the system might be described as a state of the system itself (“make a coffee to

standard X”). At the next level of operationalisation, the process for achieving that

state would be described by the role (“follow the coffee-making work-

instructions”). Such work instructions could then be described by the role at

progressively more detailed granularity.

 At some point the atomic goals / states / processes must be interpreted and

executed by the player. In this sense, the relationship between role and player is

more like the relationship between program and abstract machine, than between

two components at the same level of abstraction. In an organisational context, the

amount of autonomy that a player can exercise in a role is defined by the

organisation rather than the player. Based on the above intentional hierarchy,

we can identify five levels of player autonomy. Ordered in terms of increasing

player autonomy, these are:

1. No autonomy – player executes the process defined in the role

2. Process autonomy – player can choose the process to meet the system state

defined in the role

3. System-state autonomy – player can choose a system state and processes to

fulfil a goal defined by the role

4. Intentional autonomy – player can choose if it will fulfil a goal/state/process

defined by the role

An additional level of autonomy can be identified, although it is not one defined by

the role, that is:

5. Autonomy from constraints – player can violate constraints defined in the role.

 As the role is organisationally defined, the intention or purpose of the role is

always defined external to the player (i.e. it is implicit in the role itself). On the

other hand, the process is always executed by the player. In this conception, unlike

the player-centric view of role, the role does not execute any domain function. In

the following sections we will discuss each of these levels of autonomy and

possible strategies for implementing such roles in software.

Chapter 5 Roles and Players 87

5.4.1. Players with no autonomy
A player with no autonomy is told what actions to execute and always attempts to

execute them. In our coffee shop example, the role contains detailed work

instructions that define the process to be followed when executing a role task. The

purpose and the system-state of the role are implicit as indicated by the dotted

boxes in Figure 5-4 below. The implicit purpose and system-state have been reified

into the process instructions by the role designer. In a static role definition there is

no runtime translation from the role’s intention to system-state, and from the

system-state to process.

Figure 5-4: Alternative 1: Separation between role and player where player has no

autonomy

 However, the performance of the role can vary depending on the execution

context provided by the player. For example, in our coffee shop, different

employees are able to make coffee at different rates. Where the process is defined

entirely in the role, as in Figure 5-4 above, the player can be viewed as an abstract

machine that executes the process provided by the role. The role-player pair acts as

a single entity executing in a particular environment. Such environments may have

various computational characteristics. Roles performed by different players

(computational contexts) may consequently have different observed performance.

In terms of organisational dynamics, changing the role player is changing the

machine on which the role is executed. The role identity does not change, nor does

its functional relationship to the rest of the system change.

 An alternative approach to implementing players that make no process

decisions is to have the process interface defined in the role, but the process

statically implemented in the player, as illustrated in Figure 5-5 below. This is the

approach we have adopted in the ROAD framework. All domain-function is

executed in the players. The role is an object that defines required and provided

interfaces that express the properties defined above in Section 4. The role

receives/sends messages from/to other associated roles via contracts; buffers in-

coming messages (if a player is not currently active in the role); and delegates in-

coming messages to the player. In ROAD, roles are always composed into self-

Player Role
System State Process

Purpose
Abstract
machine

88 PART II ROAD Meta-model

managed composites under the control of an organiser. Power to act within the

composite is conferred by its organiser who creates contracts between the roles.

Figure 5-5: Alternative 2: Player as execution context and single process

Other role-based organisational approaches allow the splitting of domain-function

between the role and the player. powerJava (Baldoni, Boella and van der Torre,

2005a) extends the object-oriented paradigm and Java programming language with

a pre-compiler to implement organisational roles. Institutions (like ROAD

composites) define roles that are played by players. However, in powerJava, unlike

ROAD, roles themselves perform domain-functions and institutions maintain

domain state. Institutions give ‘powers’ to the object playing the roles, rather than

having roles statically defined within an institution. Likewise, in Object Teams

(Herrmann, 2002) domain-function can be split between a role and a player (base-

object). However, Object Teams does not support adaptivity through indirection of

instantiation: once a role-object is created the link to its base-object (player) cannot

be changed.

 An advantage of having all domain-processes defined in the player is that the

role structure (organisational composite) remains a purely management abstraction.

The player can be of any type (object, component, Web service, agent, or back-end

of a user interface) as long as the player conforms to the role interface.

5.4.2. Players with process autonomy
A player with process autonomy is given a task to perform in the form of a system-

state, but it has some autonomy in deciding what steps are executed in order to

achieve that task. The player must have the ability to translate a system-state

provided by the role into a process which it can execute. If this system-state is

variable then the player may require deliberative capability to effectively perform

this translation. On the other hand, translation from the role’s purpose to system-

state is implicit – that is, carried out by the programmer when the role is designed.

Player
Process implementation

Role Object / Component / Agent

Purpose
System State Abstract

Interface

Chapter 5 Roles and Players 89

Figure 5-6: A player with process autonomy must be able to translate a system-state to

a process, then create or choose appropriate the process given constraints

 Where a role provides only a system-state to be achieved, rather than a

detailed process to be executed, the player must contain the process definition(s) to

achieve the goal. From a viewpoint external to the player (that is, from the role’s or

organisation’s perspective) the process is hidden, thus the player has apparent

autonomy. If the role is subject to environmental perturbation (for example,

changing availability of resources) the player may require some deliberative ability

to decide what process is the most appropriate one to achieve that system-state.

 Alternatively, rather than the process definitions being stored in the player, a

role may also contain pre-defined process plans from which the player selects.

Such a player might, for example, be implemented using a BDI agent with a range

of plans that can be applied to differing situations and system-states. As with all

other types of player, players with process autonomy are performing the role within

a computational context that determines the performance of the role-player. Player

performance cannot be fully characterised independent of their context, because

they are situated entities. However, while actual performance is always related to a

situated role-player pair, representations of both the role performance

requirements, and the player performance capability, are probably necessary to

enable the selection of appropriate players for particular roles.

5.4.3. System-state autonomy
A player with system-state autonomy is given an external goal which may be

satisfied by a number of states. A software example of system-state autonomy

would be an operating system that maintains processing capacity by deciding the

run-time priority of processes. A number of states could satisfy this goal and the

player must choose between them.

Role
System StatePurpose

Player reasons about
constraints to determine best

process

Player
Process 3

Process 2
Process 1

Environmental,
resource or system
constraints

90 PART II ROAD Meta-model

Figure 5-7: A player with system-state autonomy must be able to translate a role’s

purpose into a suitable system-state, and then into a process

 At the top-most levels of an organisation, players may need to determine the

appropriate system-states that best satisfy the role’s purpose, given a range of

variable internal and environmental constraints. In closed systems, where there is a

manageable finite number of system-states (possibly pre-defined states or states

defined by a limited set of parameters), it might be possible for a player to have the

capability to evaluate these alternative states and select the one that best matches

the role’s goal. However, in more open environments, where there are a large

number of constraints, it is difficult to automate such capability. Such a role would

be typically played by a software developer at design-time, or by a human operator

at run-time. These players need the perceptual capability to identify relevant

constraints; to devise appropriate system-states; to be able to model the effect of

various states on the role’s purpose; to determine the best system-state by trading

off costs and benefits; and to devise the processes to realise these states.

 Such capability is often required of a human player interacting with a system

in a supervisory role; for example, in a mixed-initiative control system (Horvitz,

1999). Providing a role interface to all players allows us to construct systems that

have a consistent architecture based on roles, regardless of whether the players are

fully automated machines, or are humans using a user interface. In many control

systems, automated control can cope with anticipated perturbations. However,

when unanticipated conditions occur, human operators must replace machines as

the role players (Rasmussen, Pejtersen, and Goodstein, 1994). By abstracting roles

from players, systems can be developed that better enable this transition.

5.4.4. Players with intentional autonomy
The purpose of the role is organisationally defined — it is implicit to the definition

of the role. From the organisation’s viewpoint its players should not exercise

Player Role
Purpose

System
State System

State System
State Process

Environment
ε

Defined in
terms of

Player reasons about
external goals to determine

best state

Chapter 5 Roles and Players 91

intentional3 autonomy; i.e. they should not have the discretion to decide which

organisational goal to adopt. A player with intentional autonomy is a free agent

with the ability to decide whether or not to satisfy external goals — it has (or we

ascribe to it) its own intentions. However, players may play roles in a number of

social networks or organisations (or even multiple roles in the one organisation)

which can lead to conflicts in priorities and the allocation of resources as shown in

Figure 5-8 below.

 A cooperative entity will fulfil the request if it can. A competitive entity only

does so if it receives sufficient reward. In the software domain, proactive software

agents might exhibit intentional autonomy. Cooperative agents attempt to

collaborate to achieve system level goals, whereas competitive agents in a market-

based system attempt to maximise their own utility.

Figure 5-8: Organisation and individual purpose may have to be resolved by a player

with intentional autonomy (a free agent)

In these cases, the players need some mechanism for prioritising these conflicting

goals, and some way to form an intention to achieve a system-state. Negotiation

between the player and the organisation about the level of service provision might

also be necessary.

5.4.5. Players with constraint autonomy
A player that exhibits constraint autonomy is prepared to violate constraints, norms

or even rules, in order to achieve its goals. For example, a greedy software agent

may take no account of the computational resources it consumes. A malicious or

anti-social agent may deliberately try to harm other agents or the system

3 We use the word “intention” in the general sense to indicate goal-directed agency as in Dennett
(1987) and Searle (1983), rather than in the limited BDI sense (Georgeff, Pell, Pollack et al., 2002) of

Role 1

Player
Role 2

Org 2
Purpose Intention

Potential conflict
Org 1

Purpose

Individual
Purpose

System
State

Process
System
State

Process

92 PART II ROAD Meta-model

environment itself. Well run organisations should generally avoid assigning roles

to greedy or malicious players. If the use of such players is unavoidable, their

behaviour has to be tightly controlled. Badly behaved players that can exhibit

autonomy from constraints might also be used in organisations provided all their

interactions with the organisation are controlled. This is the case in the ROAD

framework, where all player interaction is via their roles, and all interaction

between roles is controlled by contracts. These contracts can be used to ensure the

player does not violate organisational constraints. In addition, the contracts can

monitor (although not enforce) the performance of the player.

5.4.6. Capabilities required of players with different levels of
autonomy

Given this conceptual framework we can now define the generalised capabilities

that are needed by players to exercise the level of autonomy defined by the

organisational role.

Table 5-1: Level of capability needed for players with different level of autonomy

Level of
Autonomy

General Player Capability Needed

No autonomy Ability to communicate, follow instructions and effectively use tools
and resources provided by the role. The instructions will be
‘interpreted’ by the player and then executed.

Process
autonomy

above + ability to select appropriate processes and tools to complete
prescribed tasks

System-state
autonomy

above + ability to sense the environment, to determine which state best
fulfils the goal defined by the role in the current environment given the
tools and resource available

Intentional
autonomy

Players of roles defined by a closed organisation do not have intentional
autonomy with respect to their role. The intention of the role is defined
by the organisation. However, conflict may arise if the player is playing
more than one role. In a more open organisation (where players may
belong to other organisations), conflicts may arise between competing
goals. Such a ‘free agent’ player would need the ability to negotiate
with the various organisations to which it belongs to try and achieve
optimal outcomes.

Constraint
autonomy

Players that exhibit constraint autonomy should not be bound to roles in
organisations, unless appropriate constraints can be imposed on the
interactions of the player with the organisation.

an “intention to act” i.e. the selection of a particular course of action. Intention in our usage is more
like the “Desire” in BDI.

Chapter 5 Roles and Players 93

 In (Colman and Han, 2005b) we argue that to create a viable organisational

structure that can achieve system level goals in a complex environment, different

role players must have varying degrees of autonomy. Players need capability

commensurate with the complexity of their respective environments as defined by

their role. Mintzberg (1983) has shown that in human organisations, the higher the

role’s level in the organisational structure, the less formalised and standardised the

behaviour required of that role. The higher the role is in the hierarchy, the more

autonomy and capability that player needs to be able to adapt to environmental

perturbations. For example, players with no autonomy cannot be expected to cope

with highly variable environments given only fixed work instructions. However,

autonomy comes at a cost. While a player with system-state autonomy can always

perform a highly routinised role, it is not an effective use of resources, particularly

if the player has to perform computationally expensive scans of the environment.

 Given the diversity of player types that can participate in a ROAD application,

the ROAD framework does not define a general format for the interface between a

role and a player. As a minimum provided and required functional interfaces need

to be defined in a role’s ‘position description’. Any non-functional attributes will

also need to be expressed in this interface. Much recent research has been done to

define such “rich” interfaces, e.g. (Han, 1998; Han and Jin, 2005). Furthermore, if

players (e.g. agents) are to be developed as general purpose role-executors, rather

than being designed for particular roles, they will need the ability to read and

interpret these role ‘position descriptions’.

 If heterogeneous players are used, the framework should be extensible so that

a new type of player can be added. Adaptors will need to be appended to roles to

convert the internal interface to the appropriate interface of the players as shown in

Figure 5-9 below. For example, if the ROAD role is implemented as a standard

Java object, and the player is a Web Service, then an adaptor that presents a WSDL

(W3C, 2005) interface and converts between method calls and SOAP messages

will be needed. In an agent context, another adaptor may need to be defined that

can speak an agent communication language such as FIPA/ACL (FIPA, 2002).

5.5. The separation of organisational structure from
process

Separating roles from the players that play those roles also allows us to define

organisational role-structures that are separate from the players that perform the

function of those roles. In conventional program structures, objects / components /

94 PART II ROAD Meta-model

agents talk directly to each other. These mutual references can be hard-coded or

they can be variable references that are dynamically set. However, such structures

are fragile to the extent that all nodes must be present in the structure for it to be

well formed. The representation of the structure is also implicit in the references

that are embedded and hidden (if object-oriented principles are followed) in the

components themselves. Such an approach also requires that the entity that is

performing a function must have some representation of the structure in which it

will participate; that is, a representation of the context in which the function will be

used. This tangles structure and function in the code and inhibits adaptivity. If a

component participates in multiple relationships, to change the component requires

the restructuring of all those relationships.

 An alternative approach has been called the principle of “blind

communication” (Oreizy, Gorlick, Taylor et al., 1999). Lieberherr (1996) similarly

proposes that “structure shy” components are a prerequisite for adaptive systems.

In these approaches structure is defined separately from the components of that

structure, and can be superimposed a posterior on those components. This is the

approach adopted in ROAD, as the structure is defined by associating a role with

one or more other roles by means of contracts. On the other hand, a role instance is

always bound to one player at most. Having a single interface between a role and

its player thus simplifies the substitution of players.

 A consequence of having players that are structure-shy is that it is the roles

(and the connectors/contracts that bind them) that hold a representation of their

local structural relationships. A role can be associated with multiple roles but with

only one player. While all incoming messages (from other roles) are passed to the

player, out-going messages need to be passed to an appropriate associated role.

Roles therefore can be regarded as message routers. In Figure 5-9 below, Role A

passes all incoming messages to its player, but must allocate out-going messages to

either Role B or C, depending on the message type (if B and C are of different

types). Other allocation schemes are needed where structures include multiple roles

that fulfil the same basic function (e.g. there is more than one coffee-maker in the

organisation). For example, if Roles B and C are of the same type (they can both

handle the outgoing message), then Role A might route the message to the role-

player pair that has the better response time, better reliability or whatever other

quality of performance is of interest.

Chapter 5 Roles and Players 95

Figure 5-9: Role as message router - Principle of Blind Communication of Players

5.6. The preservation of state
Another consequence of the separation of a role and its player is the need to resolve

the question of who is responsible for maintaining state. The maintenance of state

is an issue because, in dynamic organisations, the integrity of the whole needs to be

preserved even though the parts that hold state – the roles and the players – may

change. We can distinguish two types of state that need to be maintained:

communication state and domain state.

5.6.1. Communication state
In a ROAD organisation, communication between players is always mediated by

their respective roles. Messages to a role may still be generated even though the

role is temporarily unassigned or inactive, as described in Section 5.2 above. In

order to be viable in the absence of players, organisations need to provide some

form of message queuing and storage. The recipient player cannot be responsible

for managing and storing these messages because that player may not always exist.

A number of alternative approaches are possible to ensure the on-going viability of

the organisation during the absence or transition of players. These include storing

the message in the sending role, storing it in the receiving role (as shown in Figure

5-10), or, alternatively, having the organisation store outstanding messages in the

contractual associations that connect roles. A further possible alternative of having

the sending players hold the message request if the receiver is off-line is not be a

good strategy as the sending player itself may become inactive. It also violates the

principle of blind communication as the transmitting player would need to be

aware of other roles and whether or not they have a player assigned.

Role A

Role C

Role B

Player 1

P2

P3

Adaptor
Message
Router

96 PART II ROAD Meta-model

Figure 5-10: Roles as messages buffers

 While the ROAD framework includes message buffering in roles, the

approach to how communication state is preserved is perhaps an implementation

issue rather than a fundamental attribute of runtime role structures. The scheme

employed for message buffering in the role is dependent on the mode of interaction

(e.g. push or pull) and type of synchronisation used for transactions (e.g.

asynchronous transactions). The integrity of message delivery might also be

handled in a middleware layer. We address these implementation issues in Part III

of the thesis.

5.6.2. Domain state
The other type of state that needs to be preserved, in the event of changing roles

and players, is that of the state of the process being executed, i.e. the domain state.

In object-oriented approaches, state is typically encapsulated in the objects. In

other approaches, state is stored so that it is globally accessible. In the context of a

role-oriented organisation, a number of alternatives exist as to where the domain

state can be maintained. These are

• State is maintained in player

• State is maintained in role

• State is maintained in organisation

The advantage of having the domain state stored in the player is that it maintains

the encapsulation of data and operations on that data (as in object-orientation). As

it is always the player that operates on the data, the internal representation can be

hidden and decoupled from the system as a whole. This results in the loose

coupling of role and player, and facilitates the swapping of player implementation.

The player only has to conform to the interface defined by the role.

 The disadvantage of maintaining state in the player is that when a player is

replaced any state relevant to the organisation must be transferred to the new

player. Safe points also need to be defined (eg. between transactions), when it is

permissible to swap players. Alternatively, roll-back or compensation mechanisms

Role B Role A Player 1 X
Role has incoming message queue to

store messages if player is temporarily
unassigned.

message

Chapter 5 Roles and Players 97

would need to be implemented. The problem of maintaining state during player

transfer may be addressed by storing state either in the role or in the organisation

composite itself. Storing state in the role does not entirely overcome the problem

because, in an adaptive organisation, roles themselves are created and destroyed.

Another approach, used for example in the powerJava framework (Baldoni, Boella

and van der Torre, 2005a), stores state globally in the institution (the organisational

composite). Access to such state (and resources) by roles is then controlled by the

institution “empowering” roles. Such an approach may be beneficial for storing

data related to the composite level of abstraction. However, if it is used to store

state that is properly the responsibility of the player, such an approach would break

the encapsulation of the player, leading to the well-known problems associated

with global data (Parnas, 1972).

 As the ROAD framework aims to create adaptive organisations, all domain

state is maintained by the players in order to facilitate the swapping of players. As

a consequence, it is necessary to either define stateless points in the execution

process where it is safe to transition, or alternatively define methods for

transferring state between players. How to maintain the integrity of the system

during component interchange is an active area of research (e.g. see (Hillman and

Warren, 2004) for an overview), but is outside the scope of this thesis.

5.7. Summary
Organisation is defined here as the relationships between roles in the system, and

the processes that maintain the viability of these relationships in response to

changing goals and changing environments. An organisation-centric view of roles

sees roles as nodes in an organisational structure, rather than just behaviours that

can be added to an object or agent. In an organisation, roles have an independent

identity and existence from the players who are assigned to them. Roles are first-

class runtime entities that can have a number of states with respect to players:

assigned or unassigned; active or inactive.

 The radical separation of roles and player raises a number of issues that need

to be addressed. Organisational structures in complex systems require role-players

with various levels of autonomy and capability. The relationship between a role

and its player will vary depending on the level of autonomous action required of

the player. A framework that supports such architectures needs to be able to handle

bindings between roles and a diverse range of players (objects, agents, services,

user interfaces etc.). The adaptable framework also needs to be extensible to handle

98 PART II ROAD Meta-model

new types of binding. In the ROAD framework players are “structure shy”.

Consequently, roles need to act as message routers. The framework will also have

to handle the problems of preservation of communication and domain state when

the organisation is restructured. In a ROAD application, roles are stateful interfaces

that preserve communication state if there are no players attached. Role players of

various capabilities (including humans in some circumstances) can be dynamically

assigned to roles as the demands on the system change, or the environment in

which it operates changes.

 The next chapter describes how ROAD roles are associated using contracts to

create organisational structures.

6

Contracts between Roles

Our lives are governed by contracts. These contracts can be formal or informal. They

include employment contracts, contracts of sale, business contracts, marriage contracts

and so on. Even laws can be seen as a form of social contract between the citizen and

the state. Contracts set out the mutual obligations of one party to another, and are

concerned with the governance of interactions between the parties. Contracts are also a

recurring theme in software development. As software becomes more distributed and

open, the relationships between entities in the software system can become non-

deterministic. There may be many reasons for this non-determinism. The software may

rely on third-party components or services with uncertain performance; the

communication channels between distributed components may be of variable quality;

the components may be coupled to an uncertain physical world; a mixed-initiative

system may have unreliable or variable humans in the loop; and so on. Just as contracts

help provide predictable behaviour in the social world, software contracts can be used

to regulate the associations, and thus the behaviour, in loosely-coupled systems.

 This chapter shows how contracts can be used to create, monitor and regulate the

interactions between roles in a ROAD organisation. Section 6.1 briefly reviews the

various uses of the concept contract in software engineering. In Section 6.2 we define

the properties of a ROAD contract, and then, in Section 6.3, show how the control of

interaction in a contract can be abstracted from its functional properties. In Section 6.4

we show how performance measurement points that correspond to various

synchronisation approaches can also be defined at this abstract level. Section 6.5

elaborates the general properties of application specific concrete contracts that inherit

from these abstract contracts. Section 6.6 relates the concept of a service-level-

100 PART II ROAD Meta-model

agreement to ROAD contracts. This meta-model of contracts forms the basis for our

implementation of contracts in the ROAD framework, described in Part III of the

thesis.

6.1. Software contracts
The concept of a contract is commonly used in software engineering, although a

variety of meanings have been attached to the term. For example, Bertrand Meyer’s

design-by-contract (DBC) (Meyer, 1988) defines the preconditions, post-conditions and

invariants that must hold for a given type of interaction with an object. Such contracts

are essentially one-sided because they only explicitly express the conditions for one

party. The other party is anonymous. DBC contracts are a type of interface

enforcement.

 In the real world, however, contracts always have at least two parties. They are a

type of association that expresses the obligations and responsibilities the parties have to

each other. This view of a contract as a multi-party association has also been proposed

in software design. Richard Helm (Helm, Holland and Gangopadhyay, 1990) saw

contracts as a way of specifying behavioural compositions and the obligations of

participating objects. This concept can be seen as a precursor to the reusable design

patterns which Helm went on to develop with the Gang-of-Four (Gamma, Vlissides,

Johnson, and Helm, 1995). Although Helm envisaged the development of programming

language constructs to instantiate contracts that captured such interactional

compositions, such patterns have remained largely design artefacts. More recently,

however, just as DBC contracts have been implemented with aspects (Diotalevi, 2004),

work has been done to encapsulate such patterns with aspects (Hannemann and

Kiczales, 2002).

 In Chapter 3 we reviewed, what we termed, contract-oriented architectural

frameworks (Collet, Rousseau, Coupaye et al., 2005; Mukhija and Glinz, 2003). These

frameworks use contracts to compose configurations and/or to constrain interaction

between components. The ConFract framework (Collet, Rousseau, Coupaye et al.,

2005) we reviewed in Chapter 3 is based on Beugnard et al.’s (1999) classification of

contracts. This classification proposes four “levels” of contract.

• Level 1: Syntactic contracts - ensure compatible signatures for interaction.

• Level 2: Behavioral contracts - define a component-centric interface similar to

DBC pre, post and invariant conditions

• Level 3: Synchronization contracts - deal with concurrency/coordination issues

across multiple components.

Chapter 6 Contracts between Roles 101

 101

• Level 4: Quality of Service (QoS) contracts - encompass all non-functional

requirements and guarantees.

However Beugnard, and consequently ConFract, sees these levels/contracts as separate

contracts rather than the terms of a single contract as in ROAD.

 In ROAD, contracts are used not only to compose and control associations

between roles, but are also used to make role-players ‘accountable’ for their

performance. In other words, ROAD contracts not only define functional relationships,

but also define the non-functional properties of those relationships, both in terms of the

requirements (obligations of the parties) and the state-of-fulfilment of those obligations

(performance). In this sense they are more like a commercial contract than DBC

contracts or contracts that only express behavioural compositions. Such performance

contracts are a way of monitoring and controlling the associations between entities that

are loosely coupled. They specify the required performance, and monitor and store the

actual (measured) performance of a role-player in an organisation. To extend the

analogy with a commercial contract, ROAD contracts are more like employment

contracts than, say, a building contract where the contract specifies that a set of tasks be

completed once-only. ROAD contracts empower the role-player in the context of the

organisation, and set the expected performance levels for repeated actions.

 In brief, ROAD contracts combine all the three aspects discussed above:

composition, interaction control, and performance.

6.2. The attributes of ROAD contracts
ROAD contracts are binary association classes that express the obligations of the

contract parties to each other. They are both a specification of the parties’ mutual

obligations, and a runtime entity that monitors and, to some extent, enforces

compliance with that specification. ROAD contracts define the functional interactions

that can occur between the role players, define the non-functional requirements of each

of the parties with respect to those interactions, and measure the role-players’

performances against those requirements.

ROAD contracts have the following features (illustrated in Figure 6-3 below):

• The names of the parties to the contract. A ROAD contract binds roles of

particular types (e.g. Foreman, ThingyMaker).

Contracts will also have a number of clauses. Clauses can be of three types: terms;

general clauses; and protocol clauses:

102 PART II ROAD Meta-model

• The terms of a contract are clauses that specify what one party can ask of the

other party. The collection of terms defines the parties’ mutual functional

obligations. For example, a contract term may specify that a ThingyMaker is

obliged to fulfil requests to make thingies from its Foreman. Non-functional

attributes (utilities) are associated with those terms – for example, the minimum

performance standard, the price, quality of service etc. Each term of the contract

can have one or more agreed utility functions that define how performance of

actions taken under that term of the contract will be measured. Contracts may

also contain provisions that define remedies if a clause is breached, or if there is

underperformance, by one of the parties. Some terms may “go to the heart of the

contract” in which case breach of a clause leads to termination of the contract.

• General clauses in a contract define the preconditions for the contract’s

instantiation. These include any conditions relating to commencement,

continuation, and termination of the contract. In ROAD, contract termination is

the cessation of an association (similar to termination of employment) rather than

the completion of a task.

• Protocol clauses define sequences of terms to be followed by the parties (Yellin

and Strom, 1997; Plasil and Visnovsky, 2002). For example, a foreman might be

required to allocate the resources (thingy parts) to a ThingyMaker, before it can ask

the ThingyMaker to make a thingy. A number of existing approaches exist for

specifying interaction protocols (Bracciali, Brogi and Canal, 2002). Examples of

protocol clauses can be found in the Buyer-Seller contract described in

Chapter 10.

As well as having the above attributes, ROAD contracts have a variety of

manifestations: general form (à la class), specific contract (à la object) and an

execution state.

• The general form (type) of a contract sets out the mutual obligations and

interactions between parties of particular classes (e.g. Foreman, ThingyMaker).
Clauses applicable to all contracts of that type can be defined. Such clauses may

express interaction patterns (Party A will do α under term X when Party B has

done β under term Y). Clauses may themselves be the subject of interaction

patterns (Clause 2 will take effect after the state defined in Clause 1 is fulfilled).

• A specific contract puts values against the variables in the contract schedule (e.g.

Foreman and ThingyMaker are named, date of commencement agreed, performance

conditions put on clauses etc.). Extra clauses, not in the general form of the

Chapter 6 Contracts between Roles 103

 103

contract, may also be added. A specific contract is instantiated with an identity

when the concrete contract is ‘signed’; that is, when specific parties are bound to

the contract.

• The terms of a contract have execution states. Each term has a state machine that

maintains the state of interaction between the parties with respect to that term

(e.g. Party A has asked Party B to do α under the terms of Term X, but Party B

has not yet complied). We call the interaction that occurs during the execution of

a term, a transaction. States of an instantiated contract can include incipient,

active, suspended, and terminated. Active and terminated states can have a

number of sub-states as shown in the diagram of a contract life-cycle1 in Figure

6-1 below.

.
Figure 6-1: Life-cycle of a contract showing various states

The transitions between these contract states are instigated by the contract’s owner (the

organiser of its self-managed composite), or by clauses being triggered. The triggering

of conditions in contract terms can cause transitions between the Active state’s sub-

states. For example, Figure 6-2 is an example of a (partial) Foreman-ThingyMaker Contract.

The specific schedule values of the contract instance are in italics. If the contract state

is Performing, and Term 1 is violated (the ThingyMaker on average makes less than 5

thingies per minute), then the contract state will transition to Non-performing or In-

breach (if the rate is less than 2 thingies per minute). If there are no general clauses

that match this circumstance, the Organiser needs to make a decision as to whether it

1 (Beugnard, Jézéquel, Plouzeau et al., 1999) defines a similar scheme for contract life-cycle, namely:
Definition (selection of contract type as suitable), subscription (parties bound to contract), application
(including handling contract violations), termination (parties unbound), and deletion. In ROAD, on the
other hand, parties (role instances) are bound to a contract when it is instantiated.

Initial

Final

Active Terminated

Fulfilled

Rescinded

Incipient Performing

Non- performing

In-breach

Suspended

Breached

104 PART II ROAD Meta-model

will transition the contract to one of the Terminated states that ends the association

between the roles. This is not necessarily an automatic transition, as the Organiser may

have no other thingyMaker players available and may choose to keep an

underperforming player. Note that contract states do not explicitly indicate the “guilty

party”, but this information is implicit in the term that is violated (Party B in the case of

Term 1).

Contract Type Foreman-ThingyMaker Contract
Contract Instance Name ft1
Parties Party A: Foreman f1
 Party B: ThingyMaker tm1
Terms
 1. B must make thingies on request from A NFR1 Moving average >= 5 thingies / minute
 PRE: qty (thingyparts) > 0 NFR2: cost = $1 / thingy
 2. A may provide thingy parts to B
 on request from B NFR: none
Breach conditions B provides < 2 thingies / minute
General Clauses contract state is suspended if B under maintenance
Current state Incipient

 Figure 6-2: Example of a contract instance between a Foreman and a
ThingyMaker

 Figure 6-3 below shows the basic concepts that make a ROAD contract, and that

serve as a meta-model for the implementation of contracts in the ROAD framework as

described in Part III. The elements in the diagram are discussed in more detail in

subsequent sections of this chapter.

Figure 6-3: ROAD Contracts - Basic Concepts

Real-world commercial contracts are passive bits of paper that are monitored, and to

some extent enforced, by the parties. A ROAD software contract, on the other hand,

can store dynamic state-of-execution information in the contract itself. The contract

itself (on behalf of the organisation) can also enforce the terms of the contract by

controlling the interactions between the parties.

2..* {ordered}

GeneralClause
Contract

Role
Term

ProtocolClause Clause

TimeUtility

Utility

2
1..*

0..*

0..*

0..*

RequiredPerfomance
ActualPerfomance
Pre/post/inv conditions

TransactionDefinition

Chapter 6 Contracts between Roles 105

 105

 In ROAD, contracts between roles are currently binary. While there is no technical

impediment to creating contracts with more than two parties, if a number of parties are

jointly responsible for the performance of a contract term it can be difficult to assign

responsibility in the event of failure. As one purpose of ROAD contracts is to identify

underperforming role players, making all contracts binary simplifies this process. The

limitation of binary contracts is that they cannot, by themselves, model complex

interdependencies between three or more parties. In ROAD, these interdependencies

between contracts are handled by the composite’s organiser as we describe in the next

chapter.

6.3. Contract abstraction
Contracts between functional roles often share common characteristics with respect to

the control aspects of the relationship. These aspects can be abstracted and

encapsulated as abstract contracts. We call these abstract associations performative

contracts because they express what one party can ask of another; i.e. a performative2.

The participants in a performative contract play performative roles, as well as

functional roles. Examples of such performative roles include supervisor, subordinate,

auditor, auditee, predecessor, successor, buyer, seller, and so on. As such, performative

roles are classifiers for the ends of an association, and always come in pairs as shown in

Figure 6-4 below.

Figure 6-4: Functional and performative roles

 Using our example of a WidgetDepartment, the performative relationship between a

Foreman and an Assembler could be characterised as a Supervisor-Subordinate

relationship. Similarly, a Foreman-ThingyMaker relationship would also be characterised

as a Supervisor-Subordinate relationship. Rules can be defined that control the

interactions between such performative roles. For example, a supervisor can tell a

2 In previous work (e.g. (Colman and Han, 2006b)) we called these operational-management (or just
management) roles and contracts. In order to avoid confusion with composite management (organiser)
roles we now call them performative roles and contracts. We have adopted the word performative from

Assembler

Supervisor

Subordinate

Foreman

Performative roles are
association ends that
express abstract control
relationships

Functional roles
are positions

within an
organisational

structure

Player2

Player1

Role-role
association

(contract)

106 PART II ROAD Meta-model

subordinate to do a work related task but a subordinate cannot tell a supervisor what to

do. At the programming level, this means that subordinate roles cannot invoke

particular categories of methods in supervisor roles. Performative contracts define

patterns of interaction between roles at an abstract level but, unlike functional roles, do

not serve as a position in an organisational structure. Abstracting away control from the

process of an organisation facilitates the reuse of common patterns of control across

various types of contract, and can be used to describe the global flow of control through

an organisation. For example, an organisation that is a network of roles bound by

supervisor-subordinate performative contracts could be characterised a command

hierarchy.

 Concrete contracts inherit control relationships from these performative contracts.

The conceptual relationships between concrete and abstract performative contracts, and

the respective roles they associate, are illustrated in Figure 6-5 below.

Figure 6-5: Functional and performative contracts

 As can been seen from Figure 6-5 above, fac is an instance of a Foreman-
AssemblerContract which is an association class between the Foreman and the Assembler

roles. The ForemanAssemblerContract inherits the form of its control relationships from

the SupervisorSubordinateContract by virtue of the fact that the Foreman has a Supervisor

role in relation to the Assembler’s Subordinate role.

 Figure 6-6 below illustrates an organisational structure for our WidgetDepartment.
This structure is similar to the Bureaucracy pattern (Riehle, 1998) but is built using

contracts. In order to simplify the diagram, contracts have been drawn as diamonds.

The structure, which is similar to a business organisation chart, is still abstract because

players have not yet been assigned to roles. Note that the DooverMaker functional role

has both Peer and Subordinate performative roles in the organisational structure relative

to other functional roles with which it interacts.

agent communication languages to indicate, at an abstract level, what one party can say to another (i.e.
what types of speech acts are permissible).

f: Foreman

a: Assembler

fac: Foreman-
AssemblerContract

Supervisor

Subordinate

Supervisor-
SubordinateContract

Functional level Control level

Functional
roles

Performative
roles

Chapter 6 Contracts between Roles 107

 107

Figure 6-6: Domain specific abstract organisation bound by contracts

6.4. Abstract contracts at the performative level
A contract term defines a transaction that expresses the obligation of one party to the

other party. As discussed earlier, the communications that occur between the parties in

such a transaction can be viewed, at an abstract level, as expressing control

relationships. Communications between the parties can be represented as abstract

control messages. This allows us to characterise three properties of contracts and terms:

the authority relationship between parties to the contract; the sequence of abstract

messages in a term; and the points at which the performance (or non-performance) of

the contract term can be measured for various types of transaction. These three

properties of abstract performative contracts are examined in the next three subsections.

6.4.1. Expressing authority using abstract message types
In ROAD, all application-related interactions between players occur via the contracts

that associate their roles in the organisational structure. This control over interaction

can become important if the players of those roles are, say, outside the organisational

boundary and their behaviour is uncertain. Such players will become increasingly

common as software systems become more open, dynamic and complex. Contracts

restrict the types of method that particular role instances can invoke in each other, thus

helping to ensure that role-players are well-behaved with respect to the application.

While such restrictions can always be written into domain-specific concrete contracts,

there are a number of common patterns of authority relationship that can be generalised

into abstract performative contracts. From our example above, the Supervisor-
Subordinate performative role association restricts interactions between the entities

playing the ThingyMaker and the Foreman to certain types of interaction. For example, a

ThingyMaker cannot invoke actions in a Foreman-Supervisor. Furthermore, these contracts

only allow interactions between particular instances of role-players. For example, the

method ThingyMaker.setProductionTarget() can only be invoked by the ThingyMaker’s own

WidgetMaker

ThingyMaker

Foreman

Supervisor

Subordinate

Doover
Maker

PeerAssembler

Peer

Subordinate

Subordinate

Supervisor-
SubordinateContract

Peer-Peer
Contract

Supervisor
Abstract Performative

contracts

Contract
(concrete) ProductionManager

Subordinate

plays

108 PART II ROAD Meta-model

Foreman. A Foreman that is not contracted to that particular ThingyMaker could not invoke

the method.

 The control communication in performative contracts can be defined in terms of

control-communication act (CCA) primitives. These performatives abstract the control

aspects of the communication from the message. We can define a simple set of abstract

CCAs for direct and indirect (resource constraint) control and for information passing

(Colman and Han, 2005). Table 6-1 defines an example set of such abstract message

primitives suitable to a hierarchical organisation.

Table 6-1: Example set of abstract message types represented by CCA Primitives

D DO Q QUERY R RESOURCE_REQUEST
G SETGOAL I INFORM A RESOURCE_ALLOCATE
Y ACCEPT N REJECT

Expanding our example of a Supervisor-Subordinate contract using the primitives we

defined above, Supervisors can initiate some types of interaction and Subordinates can

initiate others. Initial CCAs for these roles are:

Supervisor initiated: DO, SET_GOAL, INFORM, QUERY, RESOURCE_ALLOCATE
Subordinate initiated: INFORM, QUERY, RESOURCE_REQUEST

Other forms of performative contract, such as Peer-Peer, would have different sets of

valid initial CCAs for each party. For example, peers might be able to initiate messages

corresponding to all the above CCA types, but the respondent peer has the option of

replying with a REJECT. We discuss sequences of CCAs in the following section.

 If needed, the set in Table 6-1 could be extended to capture a referential command

relationship (A tells B to tell C to do something). Alternatively, the set could be

expanded to express propose-commit type communications that might be found in

agent communication, or in a database two-phase commit. However, while the above

set is only a basic set of CCAs, it is sufficient to allow us to define a number of

contracts between performative roles. From these contracts we can create

organisational structures such as those in Figure 6-6 above.

 The concept of a CCA in this paper is similar to the concept of a communication

act (or performative) in agent communication languages such as FIPA-ACL (The

Foundation for Intelligent Physical Agents, 2002). CCAs, as defined here, are far more

limited in their extent. CCAs deal only with control communication of two parties

bound in an organisational contract, and do not have to take the intentionality of

independent agents into account (Zambonelli, Jennings and Wooldridge, 2003).

Abstract communication act types have also been used to control interaction in Web

services Message Exchange Patterns (MEPs) in WSDL (W3C, 2005). However, MEPs

Chapter 6 Contracts between Roles 109

 109

only express the direction of communication (IN or OUT) and whether or not the

communication is robust or optional. In (Barros, Dumas and ter Hofstede, 2005) a

number of service interaction patterns are catalogued, including both bilateral and

multilateral patterns. The bilateral patterns (e.g. “Relayed Request”) may provide a

catalogue from which transaction types expressed as CCA sequences could be

developed. Abstract protocols also appear in component composition (Yellin and

Strom, 1997). These are aimed at ensuring the compatibility of component interfaces

and the sequencing of messages. They express the direction of the message and if it is a

request or a response (Plasil and Visnovsky, 2002). Authority relationships or control

semantics (eg. DO) are not captured.

6.4.2. Contract transactions as CCA sequences
As well as controlling individual method invocations, contracted transactions often

involve a sequence of interactions. As shown in Figure 6-3 above, a contract term is

associated with a transaction definition (as distinct from a protocol clause which is a

sequence of transactions). The contract needs to track these interactions to ensure that

contractual obligations are being followed by the parties, and to know when a

contractual transaction is completed. A transaction instance performed under a term of

the contract can be viewed as a sequence of CCAs. These CCAs are abstractions of the

actual underlying messages or method invocations. These sequences are at the same

level of abstraction as CCAs. Only the form of communication between the parties is

represented. There is no information about the particular content of the task. There are a

limited number of these sequences that form sensible interactions. For example, both

QUERY → INFORM, and RESOURCE_REQUEST → RESOURCE_ALLOCATE make sensible CCA

sequences between an initiator and respondent, whereas DO → RESOURCE_ALLOCATE

(presumably) does not make sense.

 What constitutes a valid sequence also depends on the type of request

synchronisation used in the transaction. The CORBA middleware standard defines four

approaches to request synchronisation: Oneway, Synchronous, Asynchronous and

Deferred-Synchronous (Emmerich, 2000). Similar distinctions between synchronisation

approaches are needed in the definition of valid CCA sequences. For example, a

oneway or synchronous request does not require any separate response from the

respondent. In these circumstances a single DO type invocation may be a valid

transaction. On the other hand, if an asynchronous approach is implemented a reply

would be expected in the form of, for example, a DO-INFORM sequence.

110 PART II ROAD Meta-model

 It is possible to represent these sequences as regular expressions made up of CCAs

between initiator and respondent. To do this we will encode the CCAs as single letters

(as in Table 6-1 above) so that complete transactions can be represented as individual

strings. For further expressiveness, we can apply the convention that initiator CCAs are

capitalised, and respondent CCAs are in lower case. For example, the string “Dy”

indicates that the initiating party asks the respondent to do something, and that the

respondent subsequently accepts. A deferred-synchronous DO sequence (where the

initiator is responsible for getting the result of the transaction) could be expressed as

“DQ”. Other sequences, such as a deferred-asynchronous (“DyQi”), could also be defined

if needed.

 Table 6-2: Example form of an abstract performative contract

Performative Contract
Name Supervisor-Subordinate
Party A Supervisor
Party B Subordinate
A initiated terms
 - Oneway I; G; A
 - Synchronous D; Q
 - Asynchronous Dy; Di; Gy; Gi; Qi
 - Deferred Synchronous DQ, GQ
B initiated terms
 - Oneway I
 - Synchronous Q; R
 - Aynchronous Qi; Qn ; Ra; Rn ; Ri

The form of our Supervisor-Subordinate performative contract has been summarised in

Table 6-2. The valid invocation sequences in a transaction are expressed as strings as

defined above. The contract defines terms that permit asynchronous and deferred-

synchronous interaction. In the example contract, Oneway DOs are not permitted as we

want to measure the time-performance of action requests, and to do this we need a

response when the transaction is complete. The terms of the contract will be violated if

the sequence of interactions does not follow one of these strings. Other types of

performative contract will have different sets of permissible sequences. For example,

the sequence “DiN” is presumably acceptable in a Peer-Peer performative contract,

where the “i” is a conditional accept and the initiator rejects the condition. A term of a

concrete contract, such as shown above in Figure 6-2, would be characterised by one of

the above CCA sequences. For example, Term 1 in “B must make thingies on request from A”

might be a “Di” sequence, assuming the transaction was asynchronous.

 We can further extend the CCA sequences to take account of a non-response to a

message where, say, communication channels are unreliable. For example, D*xi would

express the situation where the initiator can send a DO type message up to x times

Chapter 6 Contracts between Roles 111

 111

before there is a violation of the contract term. For each transaction where a response is

expected, values for the response timeout and the number of permissible retries (x)

would be specified (this is done at the concrete level of the contract).

 If contracts are to enforce CCA sequences, they need to keep track of the state of

communication between the roles that are party to the contract. This implies that there

must be an instance of a contract for every association between roles. For machine

processing, control abstractions of transactions can be represented by finite state

machines (FSMs). These FSMs keep track of the transactions between two contracted

parties and report violations. Clauses can have as a goal the maintenance of a state or

the achievement of a state. In the case of maintenance terms, a successful transaction

will result in a return to a ‘ready’ state. The successful completion of achievement

clauses will result in a ‘completed’ state for that clause. Figure 6-7 below illustrates DO

transaction sequences for the Supervisor-Subordinate contract. The nodes represent

CCAs issued by either the initiator or the respondent in the transaction of a particular

term in the contract. The letters in the nodes are a short hand for CCAs, as defined

Table 6-1 above (initiator CCAs in capitals, respondent CCAs in lower case). The FSM

shows valid synchronous, asynchronous and deferred-synchronous transactions

initiated with a Supervisor DO (for simplicity only timeouts on the DO has been

illustrated).

Figure 6-7: Valid synchronous, asynchronous and deferred-synchronous CCA sequences

initiated with a Supervisor DO CCA

6.4.3. Using CCAs to define performance measurement points
In an adaptive system, we need to know if the role-players are performing their role(s)

according to the non-functional requirements (NFRs) defined in the role’s contracts, so

that adaptive action can be taken if underperformance is detected. The NFRs are

defined with respect to functional transactions (e.g. Functional transaction Task A will

be completed in NFR Time t). CCAs allow us to define transaction patterns in a domain-

independent way. The performance, or non-performance, of an obligated party bound

by a contract term can be determined by measuring the change in various states at the

start and at the end of the transaction. By intercepting messages between roles, and

D

[time >
timeout]

Q

X

i

[n>retries]

X

Start

Term violation

Term transaction
completion

Deferred -
synchronous

Synchronous
Asynchronous

112 PART II ROAD Meta-model

monitoring the CCAs of those messages, a performative contract can determine the

start and finish of transaction patterns defined by contract terms. The change of state

measured can be of two types: time-dependent and domain-state-dependent. Time-

dependent performance is calculated by measuring the time it takes to perform the

transaction itself. Calculating domain-state-dependent performance involves measuring

some state of the domain or environment before and after the transaction, and then

determining the effect of the transaction (e.g. a cost-function is evaluated, or a control–

variable is measured.) In ROAD, performance is measured by an arbitrary utility

function associated with the contract-term, as shown in Figure 6-3 above.

 The type of performance that can be measured, and how CCAs indicate the start

and finish of the transaction, will depend on the synchronisation method of the

transaction; that is, whether the contract term is oneway, synchronous, asynchronous or

deferred synchronous.

 Timed performance may need to be measured when the term invokes some action

in the obligated party; that is, when a DO or SETGOAL type message is sent. Figure

6-8 below shows the interception points at which performance is measured for the

differing synchronisation methods. In synchronous interaction, time is sampled at the

point of method invocation and at the point of return of the method. Asynchronous

interaction relies on detecting the INF CCA reply that the obligated party sends when

the task is finished. In the case of a deferred-synchronous interaction, the execution

time cannot be measured directly from interactions intercepted by the contract between

roles. This is because there is no message sent on completion of the task from the

obligated role to the invoking role. However, the performance of this type of interaction

can be measured against a benchmark: the time between the invocation and when the

query for results is sent from the invoking role. The obligated party either meets the

benchmark or does not.

Figure 6-8: CCA points intercepted for measurement of time-based performance vary

depending on the contract-term’s synchronisation type (players not shown)

do_op()

∆t

do_op()

inf_callback()

∆t

do_op()

qry-result()

bench
mark
∆t

A role B role A role B role A role B role

A. synchronous B. asynchronous C. deferred-synchronous

Chapter 6 Contracts between Roles 113

 113

Figure 6-8 above is a simplification; it does not show the role-players to whom the calls

are delegated, or show the contract that intercepts the messages between the roles. It is

this contract that measures the time at the appropriate points, and calculates the time-

based metric. Also note that performance, as measured between abstract messages, does

not indicate success or failure of the task itself, as there is no domain semantics

expressed. All that is measured is the time elapsed. This measurement needs to be

interpreted by the contract into a level of performance.

 Domain-state-dependent performance measures the change of state in environment

rather than time elapsed during the transaction. By detecting the CCAs with which a

transaction starts and finishes, a contract can be made to evaluate an arbitrary utility

function that indicates some change of state within the domain or environment

(including changes of state in the player). This utility is defined at the concrete level of

the contract. Such measurement of performance can be applied to transactions with all

types of synchronisation method. Even a oneway interaction, where no response is

received from the obligated party, can be monitored for domain performance provided

there is an appropriate delay between the measurement of the initial state and the

measurement of the altered state. For example, a classic feed-back control loop (as

described in Chapter 2) is a oneway interaction. The process set by the controller does

not return a result – rather a control variable is sampled in the environment to

determine the result of the control settings. Figure 6-9 below shows the measurement of

domain-state dependent performance in an asynchronous transaction. Role A invokes

some action in Role B. This invocation is intercepted by the contract which measures

the environment ε before passing invocation to Role B, resulting in the invocation

being enacted by B’s player. This action changes the environment.

Figure 6-9: Change of domain-state measured in an asynchronous transaction

 The response message is intercepted by the contract and any change in the

environment ε is measured. For example, if Player B is an external service that charges

Role BRole A

do_op()

Environment

ε

effect measure

op()

inf_op()

Player B

utility(∆environment)

Contract

114 PART II ROAD Meta-model

for the provision of a function, the contract could access the accounting system before

and after the transaction.

 Contracts at the performative level are limited in that they only monitor or enforce

the form of the communication between the parties. Abstract types of interaction may

be restricted, and transaction patterns monitored for performance — but there is no

domain content apparent at the performative control level of abstraction. Domain-

specific content is defined at the concrete, functional level of the contract.

6.5. Concrete contracts
A concrete contract type defines the types of functional role that can participate in the

contract. In addition, as was illustrated in our example of a Foreman-ThingyMaker

contract in Figure 6-2 above, an instance of a concrete contract further specifies the

terms and clauses of the contract. The specification of a term includes the specification

of the signatures of the invocations involved in the transaction. The term can also

define an expected level of performance associated with its transaction, as measured by

an associated utility function. A concrete contract inherits its control patterns from the

abstract performative contract as described above. For example, the Foreman-

ThingyMaker contract inherits the CCA control patterns from the Supervisor-

Subordinate abstract performative contract, which are applied to the specific methods

of the Foreman and ThingyMaker (see below).

 All contracts need to specify the following items:

• Parties. The types of functional role that can be bound to the contract are

specified. In the example contract in Figure 6-2 , only instances of roles of type

Foreman and type ThingyMaker can be bound to the contract.

• Terms of the contract. Each term defines a transactional obligation of one party

to the other. These are expressed as an initial method signature that can be

invoked in the obligated party. When a contract specialises an abstract

performative contract, all functional role method invocations and responses

between the parties are associated with CCA primitives. For example, the

do_makeThingy() method of the ThingyMaker tm would be matched to the

DO CCA. This means a supervisor, contracted to tm, can invoke this method. If a

CCA sequence is to be enforced for a transaction, a valid CCA regular

expression (as defined in the performative contract) is assigned to the interaction.

Transactions between the parties must follow any abstract CCA pattern defined

in the performative level of the contract. If a CCA sequence allows for timeouts,

the values for timeouts (in the event of no response), and values for the number

Chapter 6 Contracts between Roles 115

 115

of retries that are permitted, are specified. This is done in the concrete contract as

these values only make practical sense in relation to a domain specific function.

Optionally, contracts may specify performance:

• Performance of terms. The contract defines the required level of performance

and measures actual performance. If a term defines a type of action that can/must

be performed, the contract term can have associated with it a utility function that

measures the obligated party’s actual performance of those actions. In the

example contract (Figure 6-2), thingies must be made at a rate > 5 per minute. As

set out in the previous chapter, these utility functions can be time-dependent or

domain-state dependent. The actual performance is compared to the required

performance to determine the obligated party’s level of performance with respect

to the term – e.g. performing, underperforming, in-breach. For example, a

contract might specify the maximum time allowed for a contracted thingyMaker to

produce a thingy. These non-functional requirements (NFRs) reside in, and are

measured by, the contract rather than the component itself. As such, the

performance requirement of a term can be changed dynamically by the composite

organiser.

• Performance of contracted party. The purpose of measuring the performance of

contracted parties is to attempt to mitigate underperformance, and to replace an

underperforming party if necessary. A contract term always has one party that is

responsible for its performance. The performance of a party, with respect to the

contract, is the aggregation of its performance of such terms. The significance of

underperformance can vary. Some term violations “go to the heart” of the

contract and violation of the critical clause leads to automatic breach of the

contract — the contract throws an exception. On the other hand, other terms may

not be as critical to the contract and the underperformance will merely be

recorded. The contract contains metrics to measure the performance of its terms;

for example, ‘average time to make a thingy’.

Additionally, conditions for general clauses and terms may be specified:

• Preconditions, post-conditions and invariants for the interactions can be

specified for both general-clauses and terms. General clauses that set

preconditions for the contract’s instantiation can be defined. These include

conditions relating to commencement, continuation, and termination of the

contract. In our example, the contract is suspended if the ThingyMaker machine

is off-line due to maintenance. Conditions can also be set against the performance

of contract terms. These conditions are similar to those defined in the design-by-

116 PART II ROAD Meta-model

contract (DBC) approach (Meyer, 1988), where such conditions are aimed at

ensuring the correct functioning of the software. Consequently, these DBC

conditions themselves cannot be changed. In addition to such fixed conditions,

ROAD contracts may have conditions that can be varied by the organiser

(provided the variation does not contravene correctness constraints). This allows

variable NFRs to be expressed as conditions of the contract. For example, if there

are costs associated with the performance of a function, such as making a thingy,

then the contract might specify the acceptable limit of those costs.

During execution, a contract itself monitors the interactions between the roles. The

contract will prevent unauthorised or invalid interactions and monitor transactions in

order to maintain the state of execution of its clauses. The contract also keeps the state

of any performance metrics updated. If an obligated party underperforms according to a

term of the contract, or if a clause is violated, the contract informs the organiser role

that controls it. Contracts may also be actively monitored by their organiser roles. We

examine the interactions between contracts and organiser roles in the next chapter.

6.6. ROAD contracts and role-player bindings
It is important to remember that ROAD contracts are always internal to the

organisation. They define the relationships between roles, and roles are always a

function defined by the organisation. The player of a role can, however, be outside the

organisation boundary. For example, the doovers for our Widget Making department

are sourced from an external service. The relationship between ROAD contracts and

the role-player bindings discussed in the previous chapter therefore need to be

considered.

 In the discussion of functional roles in the previous chapter, we pointed out that a

role description is an aggregation of the properties derived from its relationships. To be

able to play a role, a player must be able to meet the requirements defined in the role. It

follows, given the above discussion of contracts, that the properties of a role-player

binding are the aggregation of the obligations of the role expressed in the role’s

contracts. This role-player binding may itself be a contract of sorts that is negotiated

between the organisation (as owner of the role) and the player. We will call these role-

player contracts Service Level Agreements (SLAs) in order to distinguish them from

binary ROAD contracts. SLAs can be external to the organisation boundary, and their

formulation may therefore be a matter of negotiation between organisational entities,

rather than derived solely from organisational fiat.

Chapter 6 Contracts between Roles 117

 117

 While we do not discuss the format of role-player bindings or SLAs in this thesis,

it is worth noting that SLAs (or more correctly the organisation’s negotiating position

for what it wants in a SLA) can be derived from the role’s contract terms. In a Web

service context, ROAD contracts provide a natural mapping to coordination

mechanisms such as WSLA (IBM Corporation, 2003), WS-Coordination (BEA

Systems, IBM and Microsoft, 2004), or external contracts such as WS-Agreement

(Global Grid Forum, 2004). For example, an internal contract that binds the role (as

proxy for the Web service in the organisation) to the rest of the system can serve as a

WS-Agreement agreement template, as shown in Figure 6-10 below. ROAD contract

terms map to service description terms and service level objectives in WS-Agreement.

ROAD contracts have no concept of a guarantee term as found in WS-Agreement

because there is no notion of penalty for default in an internal ROAD contract. Such

terms could however be added to the template when the external contract is defined.

Figure 6-10: Internal ROAD contract maps to external SLAs

6.7. Summary
Contracts in the ROAD framework provide the connectors between roles that create the

organisational structure. ROAD contracts serve three functions in an adaptive system:

composition, interaction control, and measurement of performance over interactions.

ROAD contracts have abstract performative and concrete functional levels. Abstract

performative contracts specify the type of communication acts that are permissible

between the two parties, and they define the transaction patterns that can be measured

for performance. Concrete contracts bind the role instances to the contract, and create

the clauses of the contract that specify, among other things, the performance

obligations of each party. Abstracting the performative aspects of contracts makes

possible, through contract inheritance, the reuse of authority patterns found in many

types of organisational structure.

Organisational
boundary

Service
X f1:

Foreman
tm1:

ThingyMaker

Contract measures actual performance
by monitoring interactions

(from the organisation’s perspective)

WSDL interface

SLA

Agreement
Template

Service Binding

Service has
claimed

performance

118 PART II ROAD Meta-model

 In the next chapter, we show how roles and contracts are combined together to

create self-managed composites, and how these self-managed composites are structured

to create adaptive applications.

7

Self-managed Composites and the
Management System

A self-managed composite (“composite” for short) is a cluster of role instances bound

by contracts. Each composite has a single organiser that manages its internal roles and

contracts. Each composite serves some definable function and, as such, is itself a role-

player that plays a role in an ‘enclosing’ composite. Self-managed composites are the

adaptive unit in a ROAD application. Such composites are “self-managed” because

they attempt to adapt to meet the dynamic requirements defined in the external roles

they play, and also adapt to the variable performance of the players that play the

internal roles of the composite. In terms of the system-theoretic concepts discussed in

Chapter 2, self-managed composites are systems with a well-defined boundary that

attempt to maintain a homeostatic relationship between their external role and their

internal components. A ROAD application1 is a network of self-managed composites

which contain roles. These roles can be played by other self-managed composites or

other players.

 In this chapter we begin by describing the structure of self-managed composites

and their relationship to the other elements in the ROAD framework: roles, players,

contracts and organisers. We then discuss the issues of message delegation, player

containment and whether or not composites perform any domain process or maintain

state. Section 7.2 describes the function of the composite organiser who is responsible

for managing the composite. The functions of an organiser role are distinguished from

1 The top level player is the application itself. While the application does not in itself play a role in an
enclosing ROAD composite, the application can model itself as a role player in its environment. The
description of this environmental model, and the application as a role within that model, is a promising
subject for further research, but is beyond the scope of this thesis.

120 PART II ROAD Meta-Model

that of an organiser player. Organiser roles define how to change the composite while

players decide what to change. An example strategy for adaptation within a self-

managed composite is then described. Section 7.3 describes the management system

which connects the organisers across composites. This management system is distinct

from the functional system of functional roles and players. Adaptive behaviour across

composites is described including the propagation of non-functional requirements and

performance information. The conclusion to the chapter includes a summary model of

all the main ROAD concepts presented in this part of the thesis (Chapters 4 – 7).

7.1. The structure of self-managed composites
The relationship between roles, players, contracts and composites is illustrated in

Figure 7-1 below. A self-managed composite consists of one or more contracts, each

contract associating two functional roles (FnRole). Each role is played by a player,

which may itself be, recursively, a composite. This recursive structure of self-managed

composites is the basis of distributed management in ROAD applications. Each

composite has one organiser (role and player) which manages the indirection within the

composite. The elements in the conceptual model in Figure 7-1 form the basis of the

ROAD framework, and can be viewed as abstract classes from which concrete domain-

specific classes are specialised.

Figure 7-1: Conceptual relationship between functional roles, players, and self-managed

composites

 As well as being a container that aggregates contracted roles, a composite-player

must present a functional interface(s) that is compatible with the external role(s) it

plays. (As a player can play more than one role, it may present a number of such

interfaces). It follows that, to be well-formed, the composite must have internal roles to

which it can delegate messages that pass over these interfaces, unless, as discussed

below, the composite provides such functionality itself rather than delegating it to a

sub-role.

FnRole Player

Contract

Composite
Organiser

Role
Organiser

Player

0..1◀ plays0..* 2 1..*

controls roles, player
bindings and contracts

11

manages ▶

plays ▶

1..*

Chapter 7 Self-managed Composites and the Management System 121

 As we described in Chapter 5 (Figure 5.9), a functional role-player follows the

principle of blind communication. The player is unaware of the structure of the

organisation in which it plays a role. It is the external role that is aware of its local

structure. While a role is aware of the external structure, a composite is aware of its

own internal structure and acts as a message router. As shown in Figure 7-2 below

(which extends Figure 5.9) a composite (Player1) receives incoming messages from the

external role it plays (RoleA) then delegates these messages to the appropriate internal

role (r1 or r2) depending on the type of message. In the ROAD framework, the routers

in both roles and composites are implemented as Role-Message tables. Every role and

composite has such a table. The records in these tables associate message types with

role instances. The records in a composite’s message-role table are updated by the

composite’s organiser as the composite is reconfigured. The implementation of these

tables is discussed in more detail in Chapter 8.

Figure 7-2: Self-managed composites delegates incoming messages to its roles

 A number of issues arise with this conception of self-managed composites. The

first is whether players that play the roles within a composite are also conceived as

being “within” the composite, or external to it. Functional players are always separable

from their roles, and may be separable from the composite. What ‘separation’ means

here can vary. The players may be closely coupled to the implementation of the

composite, for example, they may share the same deployment package. Or some

players may have the power to create other players to play roles in the composite. The

player may be in a different package, but be in a runtime environment that is shared

with the composite. Or the player may be in a completely separate runtime and

organisational context, as is the case if the player is a Web Service from an external

Role A

Role C

Role B P2

P3

r1

r2
r3

Composite
Player 1

P4

P5

Routing
(Role-message)

tables

Enclosing
composite

Functional
messages

122 PART II ROAD Meta-Model

provider. Given this range of possible ‘degrees of separation’, the ROAD framework is

agnostic as to whether or not players are a part of the composite.

 A second issue is whether the composite-player performs any domain function, or

whether the composite delegates all function to the roles it aggregates. Related to this

issue is whether or not the composite (“organisation”) maintains state, as discussed in

Chapter 5 (Section 5.6.2). In the current implementation of ROAD, composite players

are purely structured containers that perform no domain function in themselves, and

maintain no domain state2. This approach has an aesthetic appeal in that role and

composite are the inverse of one another, as can be seen from Figure 7-2 above.

However, this does not preclude an application developer extending the abstract

composite class to include the implementation of domain functionality.

7.2. Organisers
Each self-managed composite has an organiser. Consistent with the principle of

separation between process and control in the ROAD framework, the organiser

function can be separated into an organiser role that provides the mechanisms

(operations) to manipulate a composite, and a player that controls the reconfiguration.

 Figure 7-3 below reproduces the illustration of our Widget Making Department

composite from Chapter 4. The WidgetDepartment wd plays the WidgetMaker role

instance wm in the Manufacturing Division composite. The WidgetDepartment composite

has an organiser role wdo played by op1.

2 In contrast to ROAD, PowerJava (Baldoni, Boella and van der Torre, 2005) extends the object-oriented
paradigm and Java programming language with a pre-compiler to implement organisational roles and
“institutions”. This approach has many similarities to ROAD in that institutions (similar to ROAD
composites) define roles that are played by players. A major difference in the approaches is that in
PowerJava institutions perform domain functions and maintain domain state themselves. Institutions give
‘powers’ to the object playing the roles, and there is no organiser role.

Chapter 7 Self-managed Composites and the Management System 123

Figure 7-3: Example of recursive structure of self-managed composites

7.2.1. Organiser roles
The organiser role maintains a representation of its self-managed composite and has

operations to manipulate and reconfigure the structure of its self-managed composite.

These internal operations are standard to all organisers. Following the distinction made

in Chapter 3, we can classify them as reconfiguration or regulation operations. These

operations of an organiser role include:

Reconfiguration operations

• Create new instances of roles from predefined role types, and remove unwanted

roles. For example, in Figure 7-3, if wd receives a request for more thingies, its

organiser wdo can create an new ThingyMaker role tm2.

• Make and break contracts between roles in its self-managed composite. An

organiser can instantiate, abrogate and reassign contracts between functional

roles, e.g. wdo creates the contract c2 between tm2 and the Foreman f.

• Make and break bindings between its roles and players that are available and

functionally compatible. e.g wdo binds player p2 to tm2, or changes tm1’s player

from p5 to p3.

• Maintain the composite’s Role-Message (router) table so that incoming

functional messages are delegated to the appropriate sub-role. In our

mdo:
Manufacturing

DivisonOrganiser

wdo: Widget
DeptOrganiser

pm: Production
Manager

tm1:
ThingyMaker

…

…

C3

C2

Organiser
role instance

Functional
role instance

Contract
instance

Self-managed
comp. player

tm2:
ThingyMaker

WidgetDepartment
composite player

requirements &
constraints

C1 wm:
Widget
Maker

<<player>>
wd:Widget
Department

Functional
interface

Management
interface

p3

Simple player
(object, agent,
etc…)

op1

p2

f:Foreman

performance
claims

p5

p4

a1:
Assembler

C4

ManufacturingDivision
composite player

Plays

p1

op2

Management
interface

124 PART II ROAD Meta-Model

WidgetDepartment, the organiser wdo sets the Role-Message table so that all

widget orders from the ProductionManager pm in the ManufacturingDivision are

delegated to the Foreman f in the WidgetDepartment composite.

Regulation operations

• Monitor the actual performance of contracts in their self-managed composite.

This can occur through the contract notifying its organiser of underperformance

or breach. Alternatively, the organiser can poll its contracts.

• Change the state of a contract, e.g. from active to suspended, as described in

Chapter 6.

• Update the required performance in the terms of a contract.

• Change the conditions in both general clauses and terms of a contract.

In order to carry out these internal operations an organiser must maintain a

representation of the organisation. It must know:

• What roles and players/sub-composites it is controlling.

• What contract-types it has available to associate those roles.

It also needs to communicate with other organisers of any adjacent self-managed

composites: i.e. the organiser of the enclosing composite, and the organisers of any

sub-composites.

• Receive non-functional requirements from organisers higher up the management

system e.g. wdo receives a request for an increased rate of production from the

Manufacturing Division organiser mdo

• Transmit non-functional requirements to the organisers of any composite players

under its control

7.2.2. Organiser players
The above operations and knowledge structures define a generic organiser role class.

The role defines how to manipulate the composite. The responsibility of the player who

plays the organiser role is to figure out what is to be done. This requires some level of

decision making. Separating organiser roles from players allows generic functions to be

separated from the domain-specific decision-making process. The decision-making

functions that use domain-specific knowledge are implemented in the player. While,

conceptually, the organiser player is separate from the organiser role, whether or not to

implement them as separate runtime entities is a design decision. One advantage of

decoupling the organiser role from its player is that players may vary in the intelligence

they can apply to the decision-making process. For example, due to changing

requirements an organiser player may be unable to reconfigure its composite in a way

Chapter 7 Self-managed Composites and the Management System 125

that fulfils its external obligations. In this case, the organiser can be upgraded to a more

intelligent model such as a deliberative agent or human operator. These functions

require some deliberative capacity. They include:

• Ability to select players. This requires the comparison of candidate player NFR

characteristics (claimed and actual performance, availability etc.) and then

deciding on the appropriate functional role-player bindings

• Ability to decide on appropriate configurations of its composite (i.e. what roles

and contracts to instantiate) in order to remediate changing NFRs or changing

performance of its players. Any such reorganisation must maintain the

composite’s viability. For example, if the structure is based on a bureaucracy, the

organiser must ensure that proper chains-of-responsibility (i.e. supervisor-

subordinate chains) are maintained to preserve the functional flow-of-control.

• Translation of non-functional requirements (NFRs) that are provided by the

enclosing composite, to NFRs for contracts within the organiser’s composite.

These NFRs set the expected performance for a role under some term of the

contract. For example, a WidgetDeptOrganiser player needs to translate a

requirement for widget throughput into NFRs of contract terms related to rate of

thingy production, as illustrated in Figure 7-5 below.

• As ROAD contracts are binary, a single contract cannot represent interaction

dependencies between more than two parties (e.g. Party A must ask B to do x

before it can ask C to do y). The organiser is responsible for coordinating such

interaction. It does this by setting conditions in the form of executable assertions

in the contracts. These assertions are dynamically updated to ensure any ordering

constraints involving more than two parties are enforced.

The organiser player may also need to perform a number of functions that require

interaction with the external environment. In the current state of the ROAD framework,

these functions have not yet been implemented, but they are included here to complete

the conceptual picture. They include:

• Ability to discover functional-role players that are candidates to play roles.

• Negotiation of service level agreements (SLAs) with external service providers.

As pointed out in Chapter 6, internal ROAD contracts may be mapped to external

SLAs when the player is, for example, a Web service provided by another

business organisation.

• If the system is a control system that is dynamically responding to perturbations

in the environment, unstable feedback loops can be created. The organiser may

need to regulate NFRs to dampen such oscillations.

126 PART II ROAD Meta-Model

• The costs of reconfiguration may also need to be modelled by the organiser, so

that any benefit gained from the restructuring is not lost due to, for example, time

delays incurred by the restructuring process itself.

It should be noted that the above organiser-player capabilities only address non-

functional reconfiguration and regulation as defined in Chapter 3 (i.e. ontogenic

adaptation). Automated functional composition is a difficult problem and has been the

focus of much research. While some of the dynamic architectures we discussed in the

literature review in Chapter 3 propose ways to ensure functional compatibility at the

syntactic level, the reliable composition of components that are semantically and

interactionally compatible is still an open problem. Altough it is conceivable that a very

smart artificial organiser could functionally construct composites, given the current

state of research, we assume functional configuration is performed by a developer at

design time. This means that the basic role and contract types that make up a composite

type are predefined and cannot be changed at runtime. The framework allows for the

reconfiguration of composites and the swapping of role-players in response to changes

that lead to differences between required and actual performance. However, organisers

in the current framework do not have the ability to compose new functions or create

new types of association. A valid functional composition is assumed as a starting point.

7.2.3. Adaptive behaviour within a composite
An example of a generic decision-making process performed by an organiser is

illustrated in Figure 7-4 below. Starting from the top-left of the flowchart, the organiser

receives NFRs from the enclosing composite. It needs to translate these composite non-

functional requirements (NFRs) into NFRs for terms in the contracts it controls. The

organiser also monitors the actual performance of its contracts either actively (polling)

or passively (waiting for a notification from the contract). If there is a mismatch

between the actual and required performance (either because the requirements in the

contract have been changed, or because the actual performance has decreased), the

organiser attempts to mitigate this underperformance by reorganising its composite.

The organiser chooses a strategy determined by the actual and claimed performance of

the existing player and other available players. The actual-performance of a role-player

pair is the historical performance measured as interactions pass through the contract. If

a new player is allocated the role, then this actual performance data must be reset. In

the absence of historical performance data, claimed-performance information could be

obtained from a specification provided by the developer of the player or a third party

accreditor.

Chapter 7 Self-managed Composites and the Management System 127

Figure 7-4: Example of a decision making process of an organiser

 In Figure 7-4 above, the types of function that may need to be implemented in an

organiser player at the application-domain level (rather than the organiser role) have

been italicised. The extent to which a player needs to implement the above functions

will depend on the type of system being implemented. In general, the more open the

system (that is the more complex the cybernetic variety (Ashby, 1956) of the

composite’s environment), the more capability the organiser-player will need to

maintain the viability of its composite.

7.3. The management system
In the previous sections of this chapter, we have focused on the adaptive behaviour of a

single composite. However, as pointed out above, the organiser of a composite receives

non-functional requirements from the organiser of the enclosing composite, and

transmits NFRs to the organisers of any composites that play roles under its control.

This hierarchical network of organisers (the thick dotted lines in Figure 7-3 above)

Is
 actual

 performance > =
 required ?

Update term’s NFRs

Change contract of role
with spare capacity

Are
 there other

players
 available ?

Inform super organiser of constraint / request
more resources

Search for compatible
players and update
available players list

Will
 newPlayer
capacity >=

requirement?

Break binding with old Player
Reset actual performance

Will
 newPlayer(s) +

oldPlayer capacity
> = requirement?

Add new functional
role (s) and contract(s).

Select
newPlayer

Is claimed
OP . performance >

required
 perform.

don’t know

yesno

yes

no

no

no

yes yes

Determine obligated
party (OP)

 yes

no

no

Are
 there other

players
 available?

yes

Monitor term’s actual
performance

Select
newPlayer

Get any modified NFRs for
composite enclosing composite

Calculate NFRs for
term(s) of contract (s)

For each
 term

Bind newPlayer(s)
to role(s)

128 PART II ROAD Meta-Model

constitutes a management system3 that can be described and controlled independently

from the players that interact directly with the application domain.

 This network of organisers is analogous to the management-systems that exist in

man-made organisations. For example, the management structure or financial system in

a manufacturing business can also be described at a separate level of abstraction from

the functional processes that transform labour and material into products. Management-

systems maintain some form of representation of the requirements and current state of

the underlying functional system. These models will vary depending on the variables

that need to be controlled in order to maintain the system’s viability (ability to survive

and fulfil its function) in its environment, as we have previously discussed in Section

2.3.

 An organiser provides the management interface to its composite and interprets the

regulatory control messages that flow through this network into terms for the contracts

within its composite. These messages are non-functional requirements expressed in

terms of metrics. Each metric is associated with a utility function, and these utility

functions are in turn associated with contract terms, as shown in Figure 6-3 of Chapter

6. Non-functional performance requirements flow down the management hierarchy,

and information on the performance of the managed composites (actual or claimed)

flows up. As defined above, it is the organisers’ responsibility to translate these

messages into NFRs that are applicable to the contract terms in the various contracts it

controls.

 We will call these two regulatory control-message flows, respectively, top-down

requirement/constraint-propagation and bottom-up performance-monitoring. We will

illustrate their dynamics in the next section.

7.3.1. Adaptive behaviour across composites
The structure and adaptive behaviour of a management-system will be illustrated with

our WidgetDepartment example. As shown in Figure 7-3 above, the WidgetDepartment
(wd) plays the WidgetMaker role within the ManufacturingDivision. The relationship

between functional requirements and NFRs is illustrated with a production scheduling

problem. We need to keep in mind that in an open system, the time taken to execute a

function may vary or come at a cost.

3 In (Colman and Han, 2006) we refer to this management system as a coordination system. We have
changed the terminology here to emphasise that this system involves more than just synchronisation, for
example it handles QoS concerns.

Chapter 7 Self-managed Composites and the Management System 129

Requirement and constraint propagation.

Performance requirements pass down the hierarchy of organiser roles to alter the

performance requirements of the contracts. In our ManufacturingDivision the

ProductionManager receives (from above) orders for widgets. It determines the priority

of the orders, and passes these on to the WidgetMaker role (as determined by the contract

C1). The ManufacturingDivisionOrganiser (mdo) receives performance requirements and

constraints, and in turn adds derived NFRs to the contract C1. For example, the contract

may require that widgets be made within certain time constraints, or that certain

resource costs not be exceeded. The WidgetMaker role is played by the WidgetDepartment
(wd) self-managed composite. The performative level of contract C1 allows the

ProductionManager pm to invoke the WidgetDepartment do_widgetOrder(…) method. To

fulfil its obligations under the C1 contract, the wd must organise the production of

Widget components, i.e. thingies and other parts (not shown) at a rate specified in the

contract.

 The Foreman f is a delegate (as discussed above in Section 7.1) for the

WidgetDepartment’s interactions with the WidgetMaker role, and provides the

implementation of the composite’s functional interface. Via this interface, the Foreman f
receives orders for widgets, and in turn allocates work to, among others, the

ThingyMakers (tm1, tm2 etc as shown in Figure 7-3). The Foreman can do this under the

terms of the Foreman-ThingyMaker contracts (instances C2 and C3) by invoking

ThingyMaker’s do_makeThingy() method. While the contracts C2 and C3 have the

same form, these instances of the Foreman-ThingyMaker contract have different

performance characteristics written into their respective contract schedules. Suppose

the role-player attached to tm1 has a claimed performance of 10 thingies per hour, while

the role-player attached to tm2 claims only to make 5 thingies per hour. The Foreman f
(party to contracts C2 and C3) can use this performance capacity information in the

schedule when deciding to whom the work should be allocated.

 Required-performance information on goals and constraints is transmitted through

the organiser roles. In Figure 7-5 below, the organiser role of the WidgetDepartment
composite (wdo) receives NFRs from the organiser above it in the management

hierarchy (mdo). These NFRs (which are stored in contract C1) include the requirement

that the player playing the WidgetMaker role has a certain throughput of widgets. The

organiser of the sub-composite (wdo), then reinterprets these into measurable

performance requirements for the contracts it controls (e.g. C3). To achieve the required

widget throughput, it follows that there must be sufficient rate of thingy production.

130 PART II ROAD Meta-Model

Figure 7-5: Interactions between an organiser role (wdo) and the organiser of enclosing
composite (mdo).

(Detail from Figure 7-3 on page 123)

 Note that these NFRs flow over a management network of organisers and contracts

(dotted arrows Figure 7-3 and Figure 7-5). This network is distinct from the functional

network over which the process is enacted. The functional structure is a network of

functional roles and their players (i.e. solid lines in Figure 7-5 representing the

functional role-player binding and functional role-role relationships). These two

networks intersect at the contracts, which are points at which management exerts it

regulatory control.

Performance monitoring and breach escalation.

The organiser role can monitor the contracts to see if they are meeting their

performance requirements. Changing requirements, environment or computational

contexts can lead to the violation of performance clauses in the contract. If the actual

performance (as recorded in the contracts) falls below the required performance, then

the organiser must attempt to reconfigure the composite by altering the existing con-

tracts, reassigning roles to more capable players or creating new contracts and roles.

For example, if the combined output of tm1 and tm2 (in Figure 7-3) cannot meet the

required performance of the composite (as determined by contract C1) then the

WidgetDeptOrganiser wdo needs to reconfigure its composite using a strategy similar to

that outlined in the flowchart Figure 7-4 above.

 If this reconfiguration is beyond the current capability of the composite organiser,

then the problem is escalated up to the next level. The organiser at the higher level must

then try to mitigate the underperformance. In our example, it could replace the

wm:
Widget
Maker

pm: Production
Manager

Manufacturing
Division

Composite

mdo:
Manufacturing

DivisonOrganiser

Contract sets current
operational
requirements for the
roles and measures
actual performance

NFRs,
Resource offers

 Claimed performance,
Resource requests

Plays

tm1:
ThingyMaker

f:Foreman

Functional interface
(delegated to Foreman f)

NFR: Widget
throughput

capacity

<<player>>
wd:Widget

Department
Composite

NFR: Thingies per
hour

Widget orders

op1

op2

wdo: Widget
DeptOrganiser

C3 C1

Management
interface

Chapter 7 Self-managed Composites and the Management System 131

WidgetDepartment wd with another player that can play the WidgetMaker role (e.g. an

outsourced service), or alternatively create another WidgetMaker role and player to

take some of the load.

 The above organiser operations are necessary for a composite to meet changing

operational requirements. However, as pointed out in Chapter 2, adaptive management

may also include higher levels of control that involve anticipation of the future and the

planning of changes (Systems FOUR and FIVE in the Viable System Model (Beer,

1979)). For example, in Figure 7-3 above, if wdo detects that the thingyMakers will be

over-loaded, it may ask mdo for resources to get more thingyMakers. Such escalation can

be viewed as an organised form of exception-handling, where performance messages

flow up through the management-system before failure occurs in the functional system.

Just as an animal detecting a threat will increase its adrenaline levels to stimulate the

heart rate for flight or fight, so the management-system detects stress on the system

then changes the parameters of contracts (or reorganises them) in an attempt to avert

system failure. Such proactive management would involve capacity planning, where

management tries to estimate the future demand and then tailor the system’s

configuration to meet that demand. This would require that higher-level organisers

have the ability to query lower-level organisers as to the capacity of their composites

given particular resource constraints. These lower-level organisers would need to

calculate such capacity, a process that may involve querying the next level below, and

so on. To achieve this anticipatory adaptivity, organiser player would need the ability to

reason about capacity and resources particular to a domain. Protocols between

organiser roles that would permit negotiation of NFRs and constraints would also be

required. The examination of such advanced adaptive techniques provides a promising

area for future research, but is beyond the scope of this thesis.

7.4. Summary
In this chapter we have described how role, players and contracts are structured into

self-managed composites. These composites are themselves role-players which enables

an application to be structured as a reconfigurable recursive hierarchy. Composites hide

their internal structure by delegating incoming messages to appropriate internal

functional roles. Each composite has an organiser role. Organiser roles provide the

means by which composites can be restructured by creating new functional roles, by

creating contract between roles, or by changing the binding between functional roles

and their players. Organiser roles also regulate the composite by monitoring and

changing the clauses in the contracts they control. Organiser roles have players who are

responsible for deciding what reconfiguration or regulation is necessary as

132 PART II ROAD Meta-Model

requirements or conditions change. Organiser players are separable from their roles,

and may be of varying capability.

 Organiser roles provide a management interface to their composite. The organisers

of composites in a recursive hierarchy are connected via these interfaces. This network

of organisers and the contracts they control constitutes a management system over

which non-functional requirements and performance information pass. This network

facilitates the operationalisation of goals down through the structure, and the escalation

of any performance deficits or problems that lower level composites can’t handle to

higher levels.

 Treating the management system of a software application as a concern separate

from the functional system, allows to us to represent the application at a higher level of

abstraction. This organisational level of abstraction allows us to modulate the

behaviour of the structure by dynamically representing and manipulating non-

functional attributes and performance over that structure. By representing software at

this organisational level, we may also be able to start to build a “management theory”

of software that can help us design and evaluate software.

 To conclude this chapter and this part of the thesis, the UML diagram of ROAD

concepts in Figure 7-6 below provides an overview of the ROAD concepts discussed in

Chapters 4 to 7. These concepts are the meta-model on which the ROAD framework is

based. The implementation of this meta-model as a class framework is described in Part

III of the thesis.

Chapter 7 Self-managed Composites and the Management System 133

Figure 7-6: Summary of relationships between ROAD concepts

Functional
Role Player

(functional)

Concrete
Contract

CompositeOrganiser
Role

Organiser
Player

0..1

◀ plays

0..*
2

1..*

1

1
manages▶

plays▶

1..*

 2..*
{ordered}

GeneralClause
Term

ProtocolClause

Clause

TimeUtility

Utility

1..*

0..*

Performative
Contract

Performative
Role

MessageRoleTable0..1

Adaptor

MessageQueue

Transaction

CCA sequence

1..*

e.g Subordinate - Supervisor e.g Supervisor

e.g Foreman -
ThingyMaker

e.g Foreman

Part III

The ROAD
Framework

 and
Discussion

8

Framework Implementation

The ROAD conceptual model, described in the previous part of this thesis, defines a

flexible structure that supports indirection of association and instantiation, and provides

a way to manage such indirection. The approach we have taken to creating adaptive

systems is to develop a domain-independent framework that implements the ROAD

meta-model. The application developer extends this framework by writing domain-

specific organisational code. In this chapter we describe the framework and some key

aspects of its current proof-of-concept implementation. An application built on this

framework is then described in the following chapter (Chapter 9).

 The implementation of the ROAD framework not only has to provide a scaffold on

which the developer can structure the specific application, but needs to do this in a way

that is practical for the developer, and does not introduce unnecessary dependencies

that reduce adaptivity. The ROAD framework reduces the load on the application

developer by providing reusable abstract classes that hide the complexity of the

adaptive mechanisms in ROAD. Unnecessary dependencies are avoided by maintaining

a separation of concerns between organisational code and functional code. These two

concerns can be independently modified, and the organisational constructs can be

superimposed post facto onto the functional code.

 In this chapter we begin by describing the framework-based approach we use to

implement adaptive software, and then we give an overview of how the concepts

described in the previous part of the thesis map to key abstract classes in the

framework. The subsequent sections then describe in more detail the Java

implementation of these key ROAD concepts; namely, roles, contracts, self-managed

composites and organisers. In particular, we describe a novel use of a type of

Chapter 8 Framework Implementation 137

instantiable aspect called an “association-aspect” to implement contracts at the

performative and functional levels. We then discuss the work that could be done to

further develop the ROAD framework and what tool support is needed by developers to

make practical the development of adaptive software organisations.

8.1. A framework-based implementation
Our implementation of the ROAD framework separates code into independent

packages: domain-independent organisational code; domain-specific organisational

code; and domain-specific functional code. Figure 8-1 below illustrates these three

concerns:

Figure 8-1: Organisational code based on the ROAD library package can be written as a

separate concern from the functional code

 1. Domain-independent organisational code is a reusable library that defines

abstract classes for functional roles, contracts, organiser roles, composites and utility

functions. This library also defines abstract performative contracts that enforce

prototypical interaction control patterns (e.g. a Supervisor-Subordinate contract). If the

abstract performative contracts provided by the ROAD library do not express the

necessary control relationships, new abstract contracts can readily be defined.

 2. Domain-specific organisational code. The programmer creates domain-

specific roles, contracts, composites and organisers based on the abstract classes in the

ROAD library package. Domain-specific utility function classes are also written to

extend the abstract utility class. These utility functions allow performance requirements

to be specified and enforced for interactions between the particular functional roles that

are bound by the contract. Domain-specific organiser players are also created to

implement specific adaptation strategies.

 3. Domain-specific functional code consists of entities that will play the roles in

the organisation. Classes representing these can be written without defining the

configuration of the organisation in which they will participate. As players have to be

ROAD library
Domain independent abstract

contracts and roles
 Organisational Code

Domain specific roles,
contracts, composites

and organisers

uses

to create an organisation
structure for

3

1

Pre-existing Functional Code
Domain specific players

2

138 PART III ROAD Framework and Discussion

compatible with the roles they play, it may also be necessary to write adaptors that can

resolve any mismatch between role and player interfaces. As ROAD provides a

heterogeneous framework, it may also be necessary for these adaptors to translate

between implementation technologies, for example between the Java invocations in the

ROAD organisation, and the SOAP messages of a Web-service player.

The organisational code from the organisational packages is compiled using a modified

AspectJ ‘association aspect’ compiler (Sakurai, Masuhara, Ubayashi et al., 2004)1 to

create an adaptive application. The roles in this application are then bound at runtime to

their players. Figure 8-2 below is an implementation version of the conceptual model

presented in Figure 7-6 at the end of the previous chapter.

Figure 8-2: The ROAD Framework library and an example domain-specific application

The class diagram of the domain-independent organisational ROAD library only shows

the abstract classes and interfaces that application extends with domain-specific code.

The other supporting classes that were shown in the conceptual diagram (e.g.

1 The Association Aspect compiler and source code is available for download at
http://www.komiya.ise.shibaura-it.ac.jp/~sakurai/aa. The provided installer installs the compiler and
runtime library in the same manner as AspectJ. Programs are compiled in an identical manner to AspectJ
by using the ajc command. At the time of writing the Association Aspect compiler was based on AspectJ
v1.2.

FnRole

IPlayer <<Aspect>>
Contract Composite

Organiser
(role)

IOrganiser
Player

1..*

manages▶

plays▶
TimeUtility

Utility
<<Association

Aspect>>
<<Performative

Contract>>
SuperSub
Contact

<<Performative
Role>>

ISubordinate

<<Performative
Role>>

ISupervisor

FnRole

<< Functional Role>>
ThingyMaker

<< Functional Role>>
Foreman

intertype
declarations

<<Association
Aspect>>

<<Concrete
Contract>>

ForemanTM
Contact

binds &
regulates

binds &
regulates

MakeThingy
Utility IForeman

Player

<<Organiser
Role>>

WidgetDept
Organiser

Widget
Department
Composite

<<Organiser Player>>
Op1

ROAD framework
Domain-independent organisational code

Domain-specific organisational code

Domain-specific functional code
Play various functional roles

1

Player1

Chapter 8 Framework Implementation 139

MessageRoleTable) will be discussed in the subsequent sections. The figure also shows

how a domain-specific organisation, in this case the WidgetDepartment composite from

our running example, is created by extending the ROAD framework. Java interfaces are

denoted by the class name prefixed with an “I” e.g. IPlayer. The domain-specific

functional code (i.e. the players) can be created and compiled independently from the

organisational code.The following sections will look at the above model in more detail.

8.2. Roles
In Chapter 5 we defined the concept of an organisational functional role. To recap, the

properties of such roles are:

• A functional role is a first-class entity that defines a position within an

organisational structure. It defines an abstract function that is the aggregation of

its obligations set out in the terms of the contracts to which it is party.

• Functional roles can also be classified as playing a performative role with respect

to each particular role-role relationship in which they participate (as shown in

Figure 8-2 above a functional role inherits from an empty performative role

interface that allows them to be bound into performative contracts).

• A role provides a router so that outgoing messages from its player can be sent to

the appropriate associated role (contracted party).

• Roles provide a message queue for incoming messages so that the role’s function

is still viable in the case of its player being temporarily unavailable.

• Roles may also need to have adaptors added to enable them to talk to players of

various types.

The ROAD framework provides an abstract class FnRole that provides functionality

such as keeping track of the contracts to which the role is a party, message queuing and

routing. We will now look at how each of these properties has been implemented in the

ROAD framework.

8.2.1. Roles as abstract function.
As described in Chapter 5, functional roles present two categories of interface. These

interfaces are illustrated in Figure 8-3 below. The first category of role interface is

associated with another role via a contract (f1 and f2 in the diagram). The totality of

these contracted interfaces represents an abstract function of the role with respect to its

organisation. The other type of role interface is its interface to its player (f3 in the

diagram). Remember that in ROAD the role performs no domain function in itself, but

rather all process is executed by the player. The role-player interface f3 is, therefore,

140 PART III ROAD Framework and Discussion

merely a re-expression in complementary form2 of the role-role interfaces (f3 =

Σ(f’1,f’2) where Σ is some aggregate re-expression and f’n is the complement of

the interface fn). The interface the player presents to its role (f4) can therefore be

regarded as some form of aggregation of its role’s organisational interfaces

(Σ(f1,f2)).

Figure 8-3: Relationship between role and player interfaces

 If these interfaces only express the syntax of required and provided method

signatures, then the aggregation Σ is straightforward: the role merely retransmits the

message. However, as described in Section 5.4, a functional role may also specify

performance requirements, interaction protocols, authority relationships and access to

resources. In ROAD these non-functional requirements (NFRs) are defined in contracts

that bind the role (nfrs1 and nfrs2 in Figure 8-3). The implementation of contracts is

discussed in the next section. However, it is possible that the desirable NFRs for a role

may be conflicting and need to be balanced against each other. This aggregation of

NFRs is a task of the composite’s organiser (as described in Chapter 7). The current

implementation of roles does not express an aggregated “position description” of non-

functional requirements that could be used to automatically match compatible roles and

players. We leave the development of NFR aggregation, and automatic search and

selection to future work. However, the inability to match NFRs is not necessarily fatal

in ROAD. An advantage of the ROAD approach is that its contracts enact exogenous

measurement of performance, and can also enforce protocols. A player can always be

bound to a role on a “suck it and see” basis, even if its performance claims or

characteristics are uncertain. If the actual performance of the player is satisfactory, in

terms of the role’s contracts, it will be retained. If not, alternative players could be

sought.

2 Where required interfaces become provided interfaces, and vice versa

Role A

Role C

Role B

Player 1

P2

Message Router
(MessageRoleTable)

f1

f2

f3=Σ(f’1,f’2)

f4=f’3P3

nfrs
1

nfrs
2

Role’s player
interface Role’s

organisational
interfaces

Chapter 8 Framework Implementation 141

8.2.2. Roles as message routers
In ROAD, it is the roles rather than the “blind” players that represent the structure of

the organisation. A role needs to be aware of the contracts that bind it, and needs to be

able to route outgoing messages from its player to the appropriate associated role (as

shown in Figure 8-3). We implement this structure by means of a MessageRoleTable

which contains a dynamic number of MessageRoleRecords as shown in Figure 8-4

below. Each record associates a message signature with one or more role instances that

can handle that message. For example, a Foreman role may have an entry in the table

that associates a do_makeThingy() method invocation with objects of type

ThingyMaker. In some circumstances a role might be contracted to multiple instances

of roles of the same type (e.g. in our example shown in Figure 7-3 the Foreman role

instance f has contracts with two ThingyMaker roles, tm1 and tm2). Such multiplicity

of role relationship is allowed if the Boolean field isMultipleAllowed is set to true.

Where there are a number of possible role instances to which a message can be sent,

some sort of allocation scheme is required to determine which role instance receives the

message. Allocators are created by the application developer to implement a method

that returns the appropriate role to which the request will then be allocated. Allocation

schemes can be simple (a default round-robin scheme is provided by the framework) or

can be more complex domain-specific schemes based on the capabilities of the players.

More details on our implementation of message allocation can be found in (Pham,

Colman and Han, 2005).

 .

Figure 8-4: Role related entities

FnRole
IPlayer

0..1

◀ plays

0..*

MessageRoleTable

0..1

Adaptor

MessageQueue

Framework

Player1

IForemanPlayer
Application

MessageRoleRecord
*

String signature
Class roleType
boolean isMultipleAllowed
Vector roles
IAllocator allocator

IAllocator

FnRole getAllocatedRole ()

AllocatorX

MessageProcessor

<< Functional Role>>
Foreman

142 PART III ROAD Framework and Discussion

 Each entry in a MessageRoleTable reflects a term in one of the contracts to which

the role is a party. Entries are maintained by the composite’s organiser as it adds and

removes contract terms.

8.2.3. Message queuing in roles
As discussed in Chapter 5 (5.6.1), roles are also responsible for preserving

communication state, thus ensuring that the organisational structure remains viable

when a player is temporarily unavailable, e.g. during the swapping of a role’s player.

Messages coming into the role are placed in an incoming queue. Each role has an inner

MessageProcessor class as shown in Figure 8-4. When the player becomes available,

the MessageProcessor extracts the message from the FIFO queue and sends it to the

player. Because the current implementation of ROAD is written in Java, method

invocations to the role have been encapsulated into messages so they can be stored.

This approach has been adopted, rather than using message-oriented middleware,

because it accords with the aspect-based method interception used in the ROAD

contracts.

 The use of incoming queues accords with a “push” or command-driven form of

organisation; that is, an organisation where process is executed by the flow of

commands down through the organisational structure. Using our example, the Foreman

role would invoke a do_makeThingy() operation in the ThingyMaker. The

Foreman does not have to worry whether or not the ThingyMaker role has a player

attached, because the message will be stored in the ThingyMaker’s queue (its “in-

tray”). Such incoming queues can be bounded so that the ThingyMaker does not

receive too many “pending” tasks. It follows that, in a push model, there needs to be

some sort of notification back to the requester if the in-queue is full3.

 An alternative to the push mode of organisation is a “pull” model. A pull-model is

demand-driven. Request messages are placed in a pool (an out-queue on the role), and

retrieved by the role(s) that service that request when they are ready. The demand-

driven mode of organisation removes the need for the requestor role to keep track of the

service role’s in-queue so that it does not become too full. It also obviates the need for

a proactive allocation scheme if there is more than one role of the same type (e.g.

multiple ThingyMakers). However, there are some complications associated with the

3 In a push model the issue arises of what happens to the sent messages if the role fails. It might be thought
that some form of compensation scheme is necessary to retrieve the sent messages, and restore
communication state to what it was prior to the failure. However, we would argue that this is a non-issue as
roles do not fail (or if they do then the whole composite has failed) – it is their players that fail. If the
player fails, it is swapped with a new one and communication state is preserved (with perhaps the
exception of the transaction that is currently being processed).

Chapter 8 Framework Implementation 143

pull-model. These include the need for multiple out-queues (one is needed for each

type of message type); difficulties in request and response matching; and the

arbitrariness in allocation (first-in, first-served) of parameterised requests that may

require different processing capacities. For these reasons, only the push-model is

currently implemented in ROAD. An extended discussion of the relative merits of

push and pull models in ROAD can be found in (Pham, Colman and Han, 2005).

8.2.4. Role-player adaptors
A major advantage of the ROAD approach is that it allows the possibility that

heterogeneous players (objects, components, services, agents, etc) can play roles in a

ROAD organisation. Rather than alter the role to match the technology of the player,

adaptors are added to roles to match the particular technology of the player. At the

syntactic level, ROAD role interfaces are Java calls. If the player is, for example, a

Web service, then an adaptor is needed to convert between Java calls and SOAP

messages. Similarly, different syntactic/technology level adaptors would be needed if

CORBA components and agents are used. In its current state of implementation, the

ROAD framework supports players that are Java objects and Web services. These

adaptors are proxies for the players, and implement an interface that represents the

player, as shown in Figure 8-4 above. From the role’s point of view, an adaptor looks

no different to a player.

 As we have pointed out above, interfaces ideally should describe more than

relationships at the syntactic level. Semantics, behaviour and QoS need also to be

represented if complete compatibility of entities is to be assured (Han, 1998). Although

behavioural and QoS levels are currently supported in internal ROAD role-to-role

contracts, the mapping of these qualities to the role-player relationship is outside the

scope of this thesis. Extending ROAD adaptors to handle behavioural protocol

mismatches between the role and the player is a current area of research.

8.2.5. The role life-cycle
Instances of roles are created and destroyed by the organiser of the composite to which

they belong. Currently the role types available to an organiser are statically defined

Java classes, and role objects are dynamically created in the same way as any Java

object4. As the role is made party to contracts (or removed from contracts) its list of

4 However, from the discussion in the previous section, it will be apparent that everything we need to know
about a role, other than its name, can be derived from the contracts that the role participates in. A role is a
named position (in a role-structure) that aggregates obligations contained in the contracts which bind it.
The actions of a role (message routing, queuing) is either generic or externally added (adaptors). Role-
types should therefore be able to be dynamically created from textual descriptions of its contracts. This is a
task for future work.

144 PART III ROAD Framework and Discussion

contracts and its MessageRoleTable are updated. Similarly, as a player is bound or

removed from the role, the role’s references to the player is updated (and vice-versa) by

the organiser. A number of issues related to integrity of the role-structure arise. Role

instances need to exist in order to create a contract between them, but what happens if

the organiser wants to delete a role that is bound to one or more contracts? Should this

be prevented or should there be an automatic cascade deletion of the contracts? Can a

role instance exist with no current contracts? Such issues are not currently addressed in

the ROAD framework, but might be viewed as constituting an organisational “style”

which may vary depending on the problem domain.

8.3. Contracts
In ROAD, all organisation-related interactions between roles, and thus by extension

their players, pass through a contract that associates those roles. As described in

Chapter 6, instances of ROAD contracts perform a number of functions. A contract:

• Creates a connector between roles

• Defines contract terms that

1. control the types of message that can flow over the connector in either

direction

2. define transactions as represented by messages passing between the

roles. These transactions can be of various types (e.g. synchronous,

asynchronous, etc.)

3. define performance measurement points associated with different types

of transactions

4. allow arbitrary utility function objects to be attached to these

measurement points

5. sets required performance in terms of the metrics defined in those

utility functions

6. measure actual performance using only those utility function objects.

• Can define other types of clause that set conditions on its existence (general

clause) or define required sequences of transactions between the parties (protocol

clause).

In this section we will describe an implementation of the ROAD concept of contract

that uses association-aspects. Instances of these aspects allow contracts to be defined

that associate two5 role instances, and to intercept the messages that pass between these

5 Association aspects can associate more than two objects, but in ROAD we limit contracts to binary
associations for the reasons discussion in Chapter 6.2.

Chapter 8 Framework Implementation 145

roles. Association-aspects can also support contract abstraction as described in Chapter

6.

 Figure 8-5 below presents a model of ROAD contracts showing some of the major

contract related classes and their properties. This model is an implementation version of

the conceptual model of contracts shown in Figure 6-3.

Figure 8-5: Contract related classes

 This model will be elaborated in the sections that follow. The current state of

implementation of the ROAD framework does not yet include general and protocol

clauses as described at the conceptual level in Chapter 6. We begin by introducing

association-aspects in the context of aspect-oriented technology and show how they can

associate a group of objects into a contract. We then show how abstract performative

contracts (abstract association-aspects) can be created using association aspects. These

abstract contracts ‘intercept’ method calls based on their CCA (control-communication

act) type. In ROAD, interaction is controlled and monitored at this abstract level. We

then discuss in more detail the inheritance hierarchy of contracts, and the related

FnRole

Term

TimeUtility Utility

2
1..*

0..*

<<Aspect>>
Contract

<<Association Aspect>>
<<PerformativeContract>>
SuperSubContract

<<Association Aspect>>
<<ConcreteContract>>

FTContract

Framework

Application

pointcut [CCA definitions]*
FnRole partyA, partyB
Organiser organiser
...

boolean addTerm(...)
void removeTerm(...)
void beforeUpdate(...)
void afterUpdate(...)
void errorUpdate(...)
...

long lastElapsedMSec
double actualMeanMSec
double movingAvMSec
...

boolean addTerm(...)
void removeTerm(...)
void beforeUpdate(...)
void afterUpdate(...)
void errorUpdate(...)
...

int calculateUtility()
boolean chkPlayPerf()
void resetActual ()
...

//advice methods ...

abstract pointcut aToB, bToA
pointcut [performative terms]*

pointcuts [terms]*

boolean addTerms(...)
void removeTerms(...)
...

MakeThingyUtility

Contract owner
String signature
Int obligatedParty
int performance
int syncType
String responseSignature
...

double calcMoveAv()
...

void setThingiesPerSec(n)
void setTargetMeanMSec(t)
void setAbsBreachThreashold(t)
int calculateUtility()
...

...

146 PART III ROAD Framework and Discussion

classes of terms and utilities. We conclude this section on contracts with a discussion

of the limitations of the current implementation of contracts using association-aspects.

8.3.1. Creating contract instances using association-aspects
Aspect-oriented methods and languages (Kiczales, Irwin, Lamping et al., 1997) seek to

maintain the modularity of separate cross-cutting concerns in the design and source-

code structures. Examples of cross-cutting concerns that have been modularised into

aspects include security, logging, transaction management and the application of

business rules. The AspectJ (Eclipse Foundation, 2004) extension to Java allows the

programmer to define pointcuts that pick out certain join points (well-defined points in

the program flow such as a call to a method). An advice is code that is executed when a

join point that matches a pointcut is reached. Aspects encapsulate such pointcuts and

advices. These units of modularity can model various cross-cutting concerns. A short

glossary of the key AspectJ terms is provided in Figure 8-6.

An Aspect J Glossary
AspectJ
AspectJ extends the Java language with constructs that allow the encapsulation of
concerns (aspects) that crosscut standard classes. AspectJ provides a compiler that
weaves aspect code through the base code at compile-time. As of version 1.5 post-
compile (binary) and load-time weaving are also supported.
Joinpoint
A join point is a well-defined point in the program flow. AspectJ can access a variety of
join points including method call and execution, constructor call and execution, read or
write access to a field, and exception handler execution.
Pointcut
A pointcut picks out certain join points and values at those points. For example, the
pointcut
call(void Point.setX(int)) picks out each join point that is a call to a method
that has the signature void Point.setX(int) — that is, Point's void setX
method with a single int parameter. Pattern matching can be used to pick out join
points. Pointcuts can also be named and composed from other pointcuts using the &&
(and), || (or), and ! (not) operators.
Advice
A piece of advice is code that is executed when a join point defined by a pointcut is
reached. In AspectJ advice can be run just before or after a pointcut is reached at
runtime. Because Java programs can leave a join point 'normally' or by throwing an
exception, there are three kinds of after advice: after returning, after
throwing, and after (which covers both the other cases). Around advice allows
alternative code to be executed.
Aspect
An aspect brings together a pointcut and an advice to define aspect implementation.
The aspect runs advice at join points picked out by the pointcut.

 Figure 8-6: Glossary of AspectJ terms

Chapter 8 Framework Implementation 147

 While AspectJ-like aspects have previously been used to add role behaviour to a

single object (Kendall, 1999), as far as we are aware they have not been used to

implement associations between roles. Aspects, as they are currently implemented in

AspectJ, do not easily represent the behavioural associations between objects (Sullivan,

Gu and Cai, 2002). While current implementations of AspectJ provide per-object

aspects, these have to associate a unique aspect instance to either the executing object

(perthis) or the target object (pertarget). When an advice execution is triggered in an

object, the system looks up the aspect instance associated with that object and executes

that instance. The per-object approach allows the aspect to maintain a unique state for

each object, but not for associations of groups of objects. In order to implement

contracts, we need aspect instances that bind groups of objects, and that can be created

and destroyed in the same way that objects are created and destroyed.

 Sakurai et al. (Sakurai, Masuhara, Ubayashi et al., 2004) developed association-

aspects to enable an aspect instance to be associated with a group of objects6.

Association-aspects meet the expressive requirements for implementing contracts as

defined above, and are implemented with a modification to the AspectJ compiler.

 Association-aspects allow aspect instances to be created in the form

MyAssocAspect a1 = new MyAssocAspect (o1, o2, … , oN);

where a1 is an aspect instance and o1…oN are a tuple of two or more objects

associated with that instance. Association-aspects are declared, as in Listing 8-1 below,

with a perobjects modifier (rather than perobject) that takes as an argument a tuple of

the associated objects. The ability to represent the associative state between objects in a

group makes association-aspects suitable for representing contracts as we have defined

them (Colman and Han 2006c). Using our running example above, the declaration of a

concrete contract to bind two objects of type Foreman and ThingyMaker would be as

follows:

public aspect FTContract extends SuperSub perobjects(Supervisor,

Subordinate){
 private Foreman f; //implements the Supervisor interface
 private ThingyMaker t; //implements the Subordinate interface
 public FTContract(Foreman f, ThingyMaker t) {
 associate(f, t); //creates the association-aspect
 this.f = f;
 this.t = t;
 ...
 }
 //contract term pointcut definitions and advice
 ...}

Listing 8-1: Declaring a concrete contract

6 In the AOP language Eos (Rajan and Sullivan, 2003) aspects can also be created to represent behavioural
relationships, however Eos always selects advice execution associated with a target object.

148 PART III ROAD Framework and Discussion

 The associate(f, t) method that binds the objects in the association, is

automatically defined when the perobjects modifier is used. The modifier also

defines a delete() method that revokes an association. In contrast to perobject

aspects in AspectJ, the creation and destruction of association-aspects instances is

explicit.

8.3.2. The contract hierarchy
As can be seen from the declaration of FTContract in Listing 8-1 and from the class

model in in Figure 8-5 above, concrete contracts inherit from the abstract performative

contracts (such as Supervisor-Subordinate, Peer-Peer, Auditor-Auditee etc.). In the

example, FTContract inherits its control behaviour from the Supervisor-Subordinate

contract SuperSub. Performative contracts in turn inherit from the abstract aspect class

Contract.aj

8.3.2.1. The root aspect – Contract.aj
This top-level aspect contains pointcut declarations that define types of method

invocation. These types are the CCA (Control-Communication Act) abstract methods

we introduced in Chapter 6. In the current implementation of the ROAD framework,

the CCA of a method is indicated by a prefix on the method name7. For example, an

invocation to perform some action is represented by a do_ prefix, as in

do_makeThingy(). The named pointcut to trap calls to this method would therefore

be

 pointcut doIt() : call(public * FnRole+.do_*(..));

which matches a public method whose name starts with “do_”, that returns any type,

has any parameters, and is in a class that inherits from the functional role abstract class

FnRole. Listing 8-2 below shows the Contract aspect definition with some of its CCA

pointcuts. Using the OR operator || to combine pointcuts, it is possible to define a

named compound pointcut allCCAs() that represents all valid organisational

communication between roles. This allows us to prevent any object that is not of type

FnRole calling CCA methods, as we will discuss below (Listing 8-5).

 The abstract aspect Contract.aj is also responsible for maintaining references

to the roles bound to the contract and providing the data structures storing the terms of

the contract. Consequently, it implements methods for adding, removing and getting

parties and terms. Note that Contract.aj is a standard AspectJ aspect (not an

7 Since AspectJ v1.5 it has been possible to define pointcuts on Java annotations. This is a less intrusive
way to indicate the control semantics of a method, rather than altering the method name. However, CCAs
have not yet implemented this way as the Association-Aspect compiler is based on AspectJ v1.2.

Chapter 8 Framework Implementation 149

association aspect) as it only defines some general pointcuts, data structures and

methods.

public abstract aspect Contract
{
 // FnRole+ is any subclass of FnRole
 pointcut doIt() : call(public * FnRole+.do_*(..));
 pointcut setGoal() : call(public void FnRole+.setG_*(..));
 pointcut inform() : call(public void FnRole+.inf_*(..));
 pointcut query() : call(public * FnRole+.qry_*(..));
 ...
 pointcut allCCAs() : doIt() || setGoal() || inform() || query() ||
 resAlloc() || resReq();
 ...

 protected Vector terms = new Vector(); //The list of terms for
contract
 protected FnRole partyA;
 protected FnRole partyB;
 protected Organiser organiser;

 …
Listing 8-2: The top-level abstract aspect Contract.aj

8.3.2.2. Abstract performative contracts
In the ROAD framework, it is the performative-level of the contract hierarchy that does

most of the work at runtime. Performative contracts such as SuperSub extend the

aspect Contract by defining the terms of the contract at the level of abstract

messages. They take the CCA patterns (pointcuts) defined in the super aspect

Contract.aj, and combine them with abstract pointcuts that indicate the direction of

communication.

 These directional pointcuts are called aToB and bToA to indicate communication

sent from party A to B, and B to A respectively. Performative aspects are association-

aspects, taking the objects (in our case abstract interface references to the role

instances) that are bound in the contract as arguments to the perobjects modifier.

This mechanism allows us to create pointcuts for the role instances that have been

associated in the contract. For example the abstract pointcut aToB is defined in the

performative contract as shown in Listing 8-3 below

protected abstract pointcut aToB(Supervisor sup, Subordinate sub);

 This abstract pointcut is made concrete in the concrete contract (e.g.

FTContract) as follows:

protected pointcut aToB(Supervisor a, Subordinate b): this(a) &&
target(b) && associated(a, b);

where a and b are functional roles that implement, respectively, the Supervisor and

Subordinate interfaces. This pointcut specifies that the invocation is made by from

party a to party b; i.e. the Supervisor a (this(a)) and to target Subordinate b

150 PART III ROAD Framework and Discussion

(target(b)), and that a and b are associated in a contract (associated(a,b)8). In

this way we can create pointcuts that define contract terms, such as a1 in Listing 8-3,

that contain both a CCA pattern and a direction of invocation for the role in the

contract. In other words, we can control the type of thing that can be said by one party

(role) to another. The code below implements the example specification of ‘who can

say what’ for a Supervisor-Subordinate contract as set out in Chapter 6 (Table 6-2).

Note also that compound pointcuts such as a0 can be created that represent all the

types of communication one party can say to the other.

public abstract aspect SuperSub extends Contract perobjects(Supervisor,
Subordinate)
{
 protected abstract pointcut aToB(Supervisor sup, Subordinate sub);
 protected abstract pointcut bToA(Supervisor sup, Subordinate sub);

 //Supervisor invocations - Subordinate obligations
 pointcut a1(Supervisor sup, Subordinate sub): doIt() && aToB(sup, sub);
 pointcut a2(Supervisor sup, Subordinate sub): setGoal() && aToB(sup, sub);
 pointcut a3(Supervisor sup, Subordinate sub): inform() && aToB(sup, sub);
 pointcut a4(Supervisor sup, Subordinate sub): query() && aToB(sup, sub);
 pointcut a5(Supervisor sup, Subordinate sub): resAlloc() && aToB(sup, sub);
 pointcut a6(Supervisor sup, Subordinate sub): accept() && aToB(sup, sub);
 pointcut a7(Supervisor sup, Subordinate sub): reject() && aToB(sup, sub);

 //Subordinate invocations - Supervisor obligations
 pointcut b1(Supervisor sup, Subordinate sub): inform() && bToA(sup, sub);
 pointcut b2(Supervisor sup, Subordinate sub): query() && bToA(sup, sub);
 pointcut b3(Supervisor sup, Subordinate sub): resReq() && bToA(sup, sub);
 pointcut b4(Supervisor sup, Subordinate sub): accept() && aToB(sup, sub);

 //compound performatives
 //what party a can say to party b
 pointcut a0() : doIt() || setGoal() || inform() || query() || resAlloc() ||

accept() || reject();
 // what party b can say to party a
 pointcut b0() : inform() || query() || resReq() || accept();
 //all the things they can say to each other
 pointcut c0() : a0() || b0();
 ...

Listing 8-3: Example of a performative contract between a Supervisor and Subordinate

These pointcuts only define the interception points in an interaction between two roles.

These interception points allow us to define actions at those points using aspect advice.

An advice is method-like code in an aspect that is executed when a pointcut is reached

in the execution flow. AspectJ supports a number of types of advice including before

advice (executed just before the join point is reached) and after advice (executed after

returning normally or after returning with an error).

 Figure 8-7 below9 schematically shows how an instance of ROAD contract (a

SuperSub contract instantiated by ft1 of type FTContract) mediates a

8 The associated pointcut is provided by the association-aspect compiler.
9 This figure should be treated as expository rather than a literal sequence diagram. Aspect-Contracts are
not just interceptor classes that sit in between roles, but rather its pointcuts are woven into the roles
themselves.

Chapter 8 Framework Implementation 151

synchronous interaction between the two functional roles (Foreman f and

ThingyMaker tm1). As described above, contracts have terms that define obligated

transactions between the parties. The contract intercepts method calls between parties

bound by the contract, where the signatures of those methods are defined in a contract

term. In the case below, DO CCA calls from f (party A) to tm1 (party B) that start with

a method name prefix do_* are intercepted. As shown in the figure, pointcuts can also

be defined that prevent unauthorised method calls (any method call that is not specified

in the contract) either between the parties to the contract, or from external entities.

Figure 8-7: Synchronous transaction between roles under contractual control

 The following code snippets from the SuperSub contract use the compound

pointcuts a1 and b0 to prevent unauthorised communication between the parties. For

example, the pointcut
 aToB(a, b) && !a0()

represents any communication that is from party A to B and is not of a CCA-type that

A is allowed to invoke on B . As shown in Listing 8-4 below, a before advice is used to

intercept the call and throw an exception if the pointcut is matched. The error string

passed to the exception is built using AspectJ’s thisJoinPoint primitive which gives

reflective information on the execution context. For example, this pointcut and advice

would intercept the Foreman-Supervisor’s non-CCA request to the ThingyMaker-

Subordinate to wash_car()as shown in Figure 8-7.

tm1: ThingyMaker f: Foreman

do_makeThingy()

ft1:
FTContract

before advice

after advice

Performance can be measured
by the contract, using either
time-based or other metrics

Contract
clauses can

prevent non-
contractual

communication

Contract term
defines pointcut:
call(* do_*(*))

&&
aToB())

x

xwash_car()

<<Performative
Role>>

ISubordinate

<<Performative
Role>>

ISupervisor

<<Association Aspect>>
<<Performative Contract>>

SuperSub

do_makeThingy()

152 PART III ROAD Framework and Discussion

...
//prevent unathorised communication from a to b
before(Supervisor a, Subordinate b): aToB(a, b) && !a0()
{
 String s = "-X-> Unauthorised "+ thisJoinPoint.getKind() + " \"" +

 thisJoinPoint.getSignature() + "\" from "+
 thisJoinPoint.getThis().getClass().getName() + " to " +
 thisJoinPoint.getTarget().getClass().getName();

 throw new InvalidCCAException(s);
}
//prevent unathorised communication from b to a
before(Supervisor a, Subordinate b): bToA(a, b) && !b0()
{
 ...
 throw new InvalidCCAException(s);
}
...

Listing 8-4: Restricting communication between roles in a performative contract

 Contracts can also prevent external parties (i.e. those objects that don’t have a

contract with the role) from interacting with the party. For example, no object other

than a properly contracted role can invoke the ThingyMaker’s do_makeThingy()

method: not even another Supervisor-Foreman. The following before advice can be

used to intercepts all CCA pattern calls from non-functional role objects (those that do

inherit from FnRole):

 before(Object a, FnRole b): allCCAs() && this(a) && target(b) {
 if (a != b){ //only call to other party, call within itself

is ok
 if (!((FnRole) thisJoinPoint.getTarget())
 .isContractedTo((FnRole)

thisJoinPoint.getThis()))
 throw new InvalidCCAException(…);
}}

Listing 8-5: Intercepting unauthorised CCA calls from non-roles

Similarly, the advice in Listing 8-6 below intercepts all calls from non-contracted

functional roles.

before(FnRole a, FnRole b): call(public * mContract.*.*(..)) &&
this(a) && target(b) {...}

Listing 8-6: Intercepting unauthorised calls from uncontracted roles

 As well as controlling interaction, abstract performative contracts define points in

an interaction that allow performance to be measured — performance being a change of

state from before to after a transaction. As discussed in Chapter 6, the points that are

used to measure a transaction will vary depending on the synchronisation method (as in

Figure 6-8). Our ‘interaction diagram’ in Figure 8-7 above shows a synchronous

transaction between the parties. In a synchronous transaction, before and after

returning advice associated with a contract term are used as the transaction is complete

Chapter 8 Framework Implementation 153

when the method call returns normally. If an error occurs during the transaction this is

caught by an after throwing advice. If the transaction is asynchronous, the post-

transaction state is measured when a method call matching a response signature is

intercepted. As shown in class diagram Figure 8-5, asynchronous terms have a field

that records the response signature. In general, a subordinate’s performance is only

measured on a DO CCA, i.e. when some action is invoked. For example, as shown in

Listing 8-3 above, the term a1 defines a DO CCA from a supervisor to a subordinate.

The before advice will therefore be:

before(Supervisor a, Subordinate b): a1(a, b)
{
 beforeUpdate(thisJoinPoint.getSignature().getName(), Term.A_TO_B);
}

Listing 8-7: A performance measurement point before the start of a transaction

 The performance measurement advice calls either a beforeUpdate() and

afterUpdate() method (defined in Contract.aj) that take as argument the signature

that identifies the term of the contract and the obligated party (Term.A_TO_B is a

constant that indicates party B is obligated). This request to update performance is then

passed to term, which in turn calls the calculateUtility() method of its utility

function(s).

8.3.2.3. Concrete Contracts
All the above implementation details are part of the ROAD framework that is

transparent to the application developer. The task for the application developer is to

create concrete contracts by defining the contracts’ specific terms and to implement the

domain-specific utility functions. As discussed in Chapter 6, these utility functions

measure the change in time or some other state. For example, the time elapsed between

before and after advice can be used to calculate time-based metrics such as rate of

production. Alternatively, some other utility function (such as cost) could be evaluated

by accessing the execution context of the advice and measuring a change in state of the

system or the environment.

 Concrete contracts, such as the FTContract in Figure 8-5 above, allow us to

define performance characteristics for each term of a contract object. Domain-specific

characteristics are passed as parameters to the Term class constructor when the clause

is created. These parameters include: a reference to the contract that the term belongs

to; the method signature; the direction of the invocation (aToB or bToA); the

synchronisation type; a response signature if the type is asynchronous; and a domain-

154 PART III ROAD Framework and Discussion

specific utility function object that defines the performance metrics. The following

code snippet from FTContract creates a term along with a utility function:

 ...
 Utility widgetUtility = new MakeThingyUtility(80, 45, 70, 100);
 //params: absBreachThold, targetMeanMSec, avgBreachThold,
movAvWindow

 Term doMakeThingyTerm = new Term(this, "do_makeThingy", Term.A_TO_B,

false, widgetUtility, SyncType.ASYNCHRONOUS,
inf_thingyMade");

 ret = addTerm(doMakeThingyTerm, partyB);
 ...

Listing 8-8: Adding a term and its utility to a contract

 The abstract Utility class has a calculatePerformance() method that can

be overridden by a concrete domain-specific utility sub-class (such as

MakeThingyUtility in Figure 8-5). Once the performance of a term is calculated, its

state will be reported to the contract, if it is in breach or is underperforming. The

contract, in turn, notifies its organiser of any underperformance.

 In order for the functional-role classes to be able to work with performative

contracts, they need to implement the empty interfaces that represent any applicable

operational-performative roles such as Supervisor or Subordinate (as shown in

Figure 8-2 above). They also need to extend the abstract functional role class FnRole.

The creation of these dependencies does not require the alteration of the pre-existing

functional roles but can be achieved by using an aspect with an inter-type declaration.

Such declarations can create, at compile-time, the inheritance relationships and

interfaces for functional roles. For instance, the following creates the inheritance

relationships for the ThingyMaker and DooverMaker classes:

declare parents: {ThingyMaker || DooverMaker} extends FnRole
implements Subordinate;

Some roles, such as Foreman, would implement both Supervisor and

Subordinate interfaces.

8.3.3. Creating and revoking contract instances
Once we have created a contract type in the above form, the creation and revocation of

contract instances at runtime is straightforward. The following code would be invoked

by an Organiser to create then delete a contract of type FTContract:

//create a contract between f1 and tm1
FTContract ft1 = new FTContract(f1, tm1);
//create a contract between f1 and tm2
FTContract ft2 = new FTContract(f1, tm2);
//revoke the contract between f1 and tm1
ft1.delete(); //...

Listing 8-9: Creating and revoking a contract

Chapter 8 Framework Implementation 155

8.3.4. Limitation of using association aspects
A limitation in the current implementation of the association-aspect compiler (Sakurai,

Masuhara, Ubayashi et al., 2004) has become apparent during implementation.

Different pointcuts within the same aspect generalisation hierarchy (such those in

Figure 8-5) cannot match the same join point. This limitation prevents the

specialisation of contract clauses using pointcuts: in other words, a functional contract

cannot add extra advice to that which is already defined in the performative contract by

means of defining its own pointcuts. Instead the advice in performative contract must

invoke abstract methods that are over-ridden in the functional contract.

8.4. Self-managed composites and organisers
As describe in Chapter 7, self-managed composites are role-players that are themselves

composed of roles. Figure 8-8 below is an implementation view of the concepts

presented in Figure 7-1.

Figure 8-8: Composites, Organisers and associated classes

A composite has lists of its roles, players and contracts. These lists are maintained by

the composite’s organiser as it reconfigures the composite’s structure.

 As discussed in Chapter 7 (Figure 7-5), a composite has two interfaces: a

functional interface over which operational process interactions flow, and a

management interface of the non-functional requirements and performance data flows.

FnRole
«interface»

IPlayer

Contract

Composite Organiser IOrganiserPlayer

0..1 ◀ plays 0..*
2 1..*

11

manages ▶ plays ▶

1..*

1MessageRoleTable

Framework

Application

<<Organiser Role>>
WidgetDeptOrganiser

<<interface>>
IWidgetMakerPlayer

<<Organiser Player>>
WidgetDeptOrgPlayer

Contract createContract()
void bindToRole(..)
void revokeBinding(..)
FnRole createRole(..)
boolean isCompatible(..)

void mitigate(...)

void mitigate(...)
...

Vector players
Vector roles
Vector contracts
...

WidgetDepartment
Composite

Contract createContract()
...

int makeWidget(..)

156 PART III ROAD Framework and Discussion

As a composite performs no domain function by itself, any functional messages must

be delegated to a role. This delegation is implemented using a MessageRoleTable. The

details of the MessageRoleTable are the same as in the FnRole as described in Section

8.2.2, and are not repeated here. A composite can be viewed as an inside-out role (or

vice-versa). Whereas a role MessageRoleTable delegates outgoing messages from its

player to externally contracted roles, a composite delegates incoming messages to its

internal roles. As a composite is a role player, all outgoing messages are passed to the

role it plays.

 The management interface of a composite is the same as the external interface of

its composite organiser role. (As the relationship between an organiser and its

composite is always one-to-one, these concepts could be implemented as the one class.)

In ROAD’s current state of implementation, this interface is entirely domain-specific.

A potential area of future work would be to define a generic management interface over

which NFRs of various types could flow (similar to that proposed for the management

of Web services (OASIS, 2005)).

 As shown in Figure 8-8 above, organiser roles contain the methods for

restructuring the composite. These methods such as createRole(),

createContract() etc., maintain the composite’s representation of itself up-to-

date (in particular, the contracts, player bindings, and MessageRoleTables in its

composites and roles). Every organiser role has a mutual reference to an organiser

player which implements the IOrganiserPlayer interface. This interface defines a single

abstract method mitigate(), which is called when any underperformance of the

composite’s contract is detected. This method is implemented in the concrete domain-

specific Organiser Player (WidgetDeptOrgPlayer in Figure 8-8). As such, the ROAD

framework does not specify the mitigation logic but a domain-specific version of a

decision making process such as that illustrated in Figure 7-4 would be implemented.

8.5. State of framework implementation and further work
The current “proof-of-concept” implementation of the framework provides a set of

abstract classes that enables the creation of adaptive organisational structures that can

dynamically respond to changes in both non-functional requirements, and to changes in

the performance of the players. The current framework supports both synchronous and

asynchronous transactions in a ‘push’ mode of organisation. The ROAD concepts

described in Part II of this thesis describe a broad vision of adaptive software, and

further work is needed to fully develop the framework. Below is a list, in no particular

order, of potential further developments of the framework.

Chapter 8 Framework Implementation 157

• Mechanisms for the aggregation of non-functional requirements from contracts

into role ‘position descriptions’. Organiser players (which, being domain-

specific, are outside the scope of the ROAD framework) could then be developed

to use these descriptions to inform appropriate player discovery, and to negotiate

appropriate external SLAs with external players.

• Support for the protocol and general clauses described conceptually in Chapter 6

have not yet been implemented in the framework. Protocol clauses require the

development of state machines in the contracts that can represent and track

sequences of transactions (Jin and Han, 2005).

• Transaction state machines that can handle timeouts and retries are yet to be

developed.

• It may be useful to develop support for deferred-synchronous transactions.

• Pull-modes of process control are not yet supported.

• All communication between organisers is currently domain-specific. It may be

worth developing and supporting a generic management language in the

framework. This language could express concepts similar to those proposed in

the Management-of-Web-Services (WSDM-MoWS) standard (OASIS, 2005).

• Additional types of role-player adaptor could be developed. Currently the

framework only supports players developed in standard Java, or as Web services

with a WSDL interface. A truly heterogeneous framework would support a wide

range of technology such as RPC, CORBA and possibly agent communication

languages such as FIPA-ACL.

• The version of association-aspects used to implement contracts in the framework

only supports the compile-time weaving of the contract term pointcuts into the

functional code. The limitation of compile-time weaving is that, while new

contract instances can be added to an application at runtime, new contract types

cannot be created on the fly. This prevents runtime functional (as opposed to

non-functional) recomposition within a composite. However, as composites are

players, new composites with different internal functional configurations can

always be swapped at runtime. Recent developments, such as load-time weaving,

support more dynamic deployment of aspects and could be used to dynamically

create new types of contract.

• As discussed in Chapter 5, the maintenance of domain state during the player

transition and reconfiguration is an outstanding issue. This needs to be addressed

on both conceptual and implementation levels.

158 PART III ROAD Framework and Discussion

• Also discussed in Chapter 5, the semantics of the role-player interface will also

vary depending on the degree of autonomy assigned to the role by the

organisation (and the capability of the player). In the current implementation of

ROAD, we have only implemented players with ‘no autonomy’ (as shown in

Figure 5-5), and leave the implementation of other types of player to future work.

• A text-based declarative description (e.g. in XML) of contracts and composites

would enable the dynamic creation of classes of these types. Such descriptions

would be integral to the development of a ROADmaker tool, as we will discuss

in the next section.

Beyond the above issues concerning further generic framework development, there are

issues that need to be addressed in a domain-specific way. For example, the greater the

uncertainty of the environment of the adaptive system, the greater will be the capability

required of the organiser player(s). Although these domain-specific players are not

strictly part of the framework, they will need to be developed in parallel with the

framework proper, if the full potential of adaptive ROAD organisations is to be

realised.

8.6. Towards tool support for developing organisational
structures

Adding adaptive behaviour to an application increases its complexity and complicates

the programmer’s task. In its current state of development, the ROAD framework

provides a set of abstract classes that can be extended by the application developer to

create adaptive organisational structures (as in Figure 8-2 above). While the framework

facilitates reuse, and hides much of the complexity of the adaptive mechanisms, to be a

practical proposition software developers will need tool support – a ‘ROADmaker’ – to

handle the added complexity.

 Roles, contracts and composites provide an articulated10 organisational structure

over which functional messages flow between players. As discussed in Section 8.2.1 of

this chapter, there is a dependency between the interfaces of players, roles and the

contracts in a role structure. The aggregation of contract terms that bind the role to

other roles, defines the organisation-side interfaces of the role, and those interfaces

need to be re-expressed as an interface between the role and its player. The

compatibility between all these interfaces must be maintained.

10 A structure with ‘joints’ in it. These joints provide degrees of indirection which then have to be
managed.

Chapter 8 Framework Implementation 159

 In conventional object-oriented or component programming, the required and

provided interfaces between two communicating components must match. If

component A has an interface X that requires certain methods be implemented in B and

provides certain method implementations that B expects, then component B needs a

complementary interface X’ as shown in Figure 8-9 below.

Figure 8-9: Interface dependencies between two communicating components / objects

 Likewise in ROAD, when Player A communicates with Player B over the role

structure, there still must be a basic compatibility of interfaces between the players,

even if there is some transformation of the syntax or protocols of the communication.

Figure 8-10 below shows the interdependencies between interfaces of roles and their

players in a simple binary relationship, ignoring any alteration to the format of

messages that may occur within the roles or their adaptors (see Section 8.2.4). If a

player is a self-managed composite, such as Player B, then there must also be

compatibility between the external interface of the composite X’ and the interfaces of

the internal roles to which the composite delegates messages (Roles D and E in the

Figure, such that X’ = Σ(x’1, x’2)).

Figure 8-10: Interface interdependencies between roles, players and contracts

 It follows that creating such a role structure involves a lot of redundant

information in the expression of the interfaces. If the interfaces of the roles and players,

as well as the contract terms, are all coded separately, then the application

programming task becomes complex and possibly prone to error. To make the ROAD

approach practical from a software development perspective, tool support will be

needed to ensure consistency, and to reduce the amount of redundant coding needed

(the interfaces should only need to be written once). A preliminary design for a

ROADmaker Eclipse plugin has been developed that presents a graphical

representation of the composite under-development. This tool would allow the

Component
A

Component
BX X’

Role BRole A Player
A

Composite
Player B Terms that

cover
 XX’

X X XX’ X’ X’

D E

X
X’1 X’2

Contract

160 PART III ROAD Framework and Discussion

programmer to create a composite from pre-existing interface definitions of objects /

components / services. Alternatively, the programmer may want to design an

organisation from scratch and generate code stubs / interface definitions for the players.

While the development of such a tool is beyond the scope of this thesis, the nature of

the dependencies in a ROAD role structure suggests a broad approach that could be

taken in the development of such a tool. This approach involves dividing the domain-

specific constructs that extend the ROAD framework into two categories.

 The first category covers constructs that define the role structure. These structural

constructs include roles (functional and organiser), contracts, adaptors and composites.

At the programmatic level, these constructs can all be viewed as entities that define or

re-express interfaces. A declarative programming approach is appropriate for defining

such role structure constructs. This is because they do not, in themselves, define any

procedure (or more precisely, their procedures and data structures are generic and thus

derived from the framework). A data model of these structural constructs and their

interdependencies could be developed, and then used as a schema for a programming

construct database that is manipulated by the tool. The declarative elements of this

model are as follows:

• Concrete Contracts consist of contract terms that can be declaratively defined.

This is already the case in the current ROAD implementation, in the sense that

terms are fully described by parameter values passed to a term constructor.

These values could be expressed, say, in an XML document. The construction of

the contract instance itself merely requires a declaration of references to its

parties (the functional role instances).

• Functional Roles can be derived from the contract terms. All domain specific

information in a role is either contained in its dynamically updatable

RoleMessageTable (updated by the Organiser), or declaratively defined (e.g. its

name). All role functionality is either inherited (e.g. message queuing), or

provided by external entities (e.g. adaptors and allocators). Roles, therefore,

should be able to be automatically generated.

• Composites perform a mirror routing function to the functional role (Figure 7-2).

As with roles, this is achieved using a dynamically updatable RoleMessageTable.

All the data structures in a composite are generic11 and inherited from the

framework. Maintenance of these structures is performed by the organiser. No

non-declarative information is therefore needed to create a composite.

11 This is the case in the current implementation. However, as discussed in Chapter 7.2, an alternative
approach would be to store domain state in the composite.

Chapter 8 Framework Implementation 161

• Role-player adaptors are dependant on the technologies used to implement the

role and player that inter-connect. As such, they can be automatically generated,

perhaps subject to some manual intervention needed to resolve mismatches at the

protocol or syntax level.

• Domain-specific organiser roles inherit all their reconfiguration functionality

from the framework. They also define methods to make contracts of given types.

These methods are identical, other than their type information, and thus could be

generated automatically using reflective mechanisms provided by Java, if we

know the types to be contracted.

The second category of constructs includes those that “do the work”. These are: the

functional players that perform the domain process; the organiser players that decide

what reconfiguration and regulation is necessary; the allocators that decide on work

allocation to roles of the same type; and the utility functions that calculate the

performance of the role-players. These constructs need a non-declarative style of

programming.

8.7. Summary
The ROAD Framework described in this chapter provides a set of abstract classes that

the application developer can extend to create an ontogenically adaptive application.

These classes hide much of the complexity of the adaptive mechanisms that allow the

application to cope with changing requirements and with changing environments. A

prototype implementation has been implemented in Java with an extension to AspectJ

called ‘association aspects’. In ROAD, instances of these aspects are used to implement

contracts that are the connectors in the organisational structure, that control interactions

and measure performance over that structure. Using these aspects, an abstract hierarchy

of contract types can be created. This allows the definition of reusable abstract

performative contracts that can define common patterns of interactions between role

types. The implementation of role and composite abstract classes is also described.

Like contracts, these classes provide generic functionality needed by concrete roles and

composites, such as message routing and queuing.

 The current implementation of the ROAD Framework supports both synchronous

and asynchronous interaction in a ‘push’ mode of organisation. There is a number of

extensions that could be made to the current implementation. In particular, a graphical

programming tool could be developed to assist the application developer declaratively

create organisational structure and check their consistency. The next chapter (Chapter

162 PART III ROAD Framework and Discussion

9) describes an application built on this framework and shows its adaptive capability.

The expressiveness and efficiency of the framework are discussed in Chapter 11.

9

A Test Application

This chapter describes the implementation of a test application based on the ROAD

framework we described in the previous chapter. The application1 demonstrates the

adaptive behaviour that the ROAD framework facilitates. The test application is based

on our running example of a Widget Making department. The application demonstrates

the following capabilities of the ROAD framework.

• Role creation

• Contract creation and deletion

• Adding terms to contracts

• Control of unauthorised communication

• Performance measurement

• Player selection based on performance

• Work allocation

• Binding roles to heterogeneous players

In order to demonstrate cause and effect in the test application, we have constructed the

composite ‘from the outside’ by using a test harness. This allows us to simply show the

application’s output relative to its input. In production code the composite would create

itself (create its roles and contracts) based on some declarative description of its

structure.

 This rest of this chapter is structured as follows. The first section provides an

overview of the classes used in the test harness and application. Section 9.2 shows how

1 This chapter is based on the technical report by Pham, Colman and Han (Pham, Colman and Han, 2005)
“The Implementation of Message Synchronisation, Queuing and Allocation in the ROAD Framework”.

164 PART III ROAD Framework and Discussion

the composite is created using roles, players and contracts, and how the framework

prevents unauthorised communication. Section 9.3 shows how the organiser of the

Widget Department attempts to mitigate underperformance by reconfiguring the

composite. Section 9.4 then shows how a ROAD application can work with

heterogeneous players – in this case Java objects and Web services.

9.1. Overview of the test application
As shown in Figure 9-1 below, the test harness uses a package of domain specific

organisational classes (Widget organisation package) based on the ROAD framework,

to create an instance of a WidgetDepartment composite that plays a WidgetMaker role. The

WidgetMaker role receives widget orders from the ProductionManager whose player is

driven by the user input via the test harness. Foreman and ThingyMaker roles are added to

the WidgetDepartment composite, along with players who can play different roles (i.e.

implement the appropriate interface). These players have different performance

characteristics, which are simulated by putting various delays in their methods that

process functional requests.

Figure 9-1: Test harness creates initial configuration based on Widget Organisation

Package and simulates functional load via Production Manager

 The ability of ROAD to intercept and prevent unauthorised interactions is then

demonstrated by attempting to invoke methods in the WidgetMaker and ThingyMaker,
prior to creating the appropriate contracts. The appropriate contracts are then created

between the ProductionManager and the WidgetDepartment, and between Foreman and the

ThingyMaker, respectively. Once the composite is properly constructed, an order to make

widgets is invoked. The output of the program then shows how the

Linh Duy Pham was primarily responsible for the writing of the original report and the associated test
application code.

f : Foreman t : ThingyMaker

WidgetDepComposite

pm :
ProductionManager

wm : WidgetMaker

manager : Manager

org : WidgetDep
Organiser

Test Harness

Widget
Organisation

Package

ROAD
framework

creates initial
composition of role ,
contract and player
instances

provides functional
input

Chapter 9 A Test Application 165

WidgetDepartmentOrganiser reconfigures the composite as it attempts to meet the terms

of its contract. The subsequent sections discuss the test harness’s input, and the

subsequent output in more detail. Figure 9-2 below shows the main classes from the

Widget Organisation package that are used in the test harness.

Figure 9-2: Overview of the main classes of the application used by the test harness

9.2. Composite construction and controlling
communication

The following discussion refers to code from the test harness and to the subsequent

output as found in Appendix A. References to line numbers from the test harness code

will be prefixed with an “i” (e.g. i21), while references to output line are referenced

with an “o” (e.g. o89).

9.2.1. Creating the composite, roles and players
The test harness script begins (i25 to i47 as shown in Listing 9-1) by creating instances

of roles, players, a composite and organiser from the classes defined in the Widget

Organisation package. SkillfulEmployee objects are players that can be assigned to both

FnRole

IPlayer
ContractComposite

Organiser
(role)

IOrganiser
Player

1..*

manages▶

plays▶
TimeUtility

Utility

SuperSub
Contact

ISubordinateISupervisor

FnRole

Production
Manager

ProManager
WidgetMaker

Contact

FTUtility

WidgetDept
Organiser

WidgetDep
Composite

WidgetDep
Organiser Player

ROAD framework
Domain-independent organisational code

Widget Organisation package
Domain-specific organisational code

Players
Domain-specific functional code

1

Employee

LazyEmployee SkillfulEmployee ForemanEmployee

ThingyMakerForeman FTContact

Widget
Maker

Manager

166 PART III ROAD Framework and Discussion

Foreman role and ThingyMaker role. Players of type LazyEmployee can only be assigned

to ThingyMaker role. Inside the WidgetDepComposite object, there are three ThingyMaker
players: badThingyMakerPlayer (of type LazyEmployee), and a foremanPlayer,
goodThingyMakerPlayer (of type SkillfulEmployee).

25 ProductionManager pm = new ProductionManager("Production Manager");

26 WidgetMaker wm = new WidgetMaker("Widget Maker");

27

28 //player for ProductionManager

29 Manager manager = new Manager("Manager");

30

31 // Organiser setup

32 WidgetDepOrganiserPlayer orgPlayer = new WidgetDepOrganiserPlayer();

33 Organiser org = new WidgetDepOrganiser(new WidgetDepRoleFactory());

34 org.setPlayer(orgPlayer);

35

36 // Player for WidgetMaker --> create the WidgetDepComposite

37 Composite widgetDepComposite = new WidgetDepComposite();

38 org.setComposite(widgetDepComposite);

39

40 //create ThingyMaker and Foreman

41 ThingyMaker t = new ThingyMaker("Thingy Maker");

42 Foreman f = new Foreman("Foreman");

43

44 //create other players

45 SkillfulEmployee foremanPlayer = new SkillfulEmployee("Foreman/Thingy Player");

46 SkillfulEmployee goodThingyMakerPlayer = new SkillfulEmployee("Skillful ThingyMaker");

47 LazyEmployee badThingyMakerPlayer = new LazyEmployee("Lazy Thingy Maker");

Listing 9-1: Creating the entities for the test application

The entities created are shown in Figure 9-3 below.

9.2.2. Adding roles to composite and binding players
Once the entities have been created, the roles and players are added to the composite

(i54 to i80). Initially, one Foreman role, and one ThingyMaker role are added.

foremanPlayer (of type SkillfulEmployee) is then bound to Foreman f, badThingyMakerPlayer
(of type LazyEmployee) is bound to ThingyMaker t. The initial players of the roles can be

changed later during execution time if the players do not meet the performance

requirements. The time taken to make a thingy is arbitrarily chosen and it is

implemented by Thread.sleep() method. A SkillfulEmployee object produces a thingy in 20

ms. Whereas a LazyEmployee object produces a thingy in 10 ms, however after each

thingy is made, its performance delay is increased by 20 ms (i.e. 30 ms then 50 ms, and

so on). The cap performance delay is 100 ms, after which it remains unchanged. Listing

Chapter 9 A Test Application 167

9-2 below shows the lines from the test harness used to add roles and players to the

composite and binding the players to the roles.

54 // add Roles and Players to composite

55 widgetDepComposite.addRole(f);

56 widgetDepComposite.addRole(t);

58 widgetDepComposite.addPlayer(foremanPlayer);

59 widgetDepComposite.addPlayer(goodThingyMakerPlayer);

60 widgetDepComposite.addPlayer(badThingyMakerPlayer);

61 // Setup Initial Players

62 try

63 {

65 pm.setPlayer(manager); //ProductionManager

67 wm.setPlayer(widgetDepComposite); //WidgetMaker

70 f.setPlayer(foremanPlayer); //Foreman and ThingyMaker

73 t.setPlayer(badThingyMakerPlayer);

74 }

Listing 9-2: Adding entities to composite and binding players to them

In this case the players have been added manually to the composite as the Widget

Department Organiser player has no player discovery capability. Figure 9-3 below

shows the initial configuration of the WidgetDepComposite and the composite’s

relationship. At this stage (line i80) the contracts between the functional roles have not

yet been created. To simplify the code the ProductionManager and WidgetMaker have

been created in the context of the test harness rather than created by another composite.

Figure 9-3: Initial configuration WidgetDepComposite Instance

f : Foreman t : ThingyMaker

badThingyMakerPlayer
: LazyEmployee

foremanPlayer
: SkillfulEmployee

goodThingyMakerPlayer
: SkillfulEmployee

Functional
role instance

Player

WidgetDepComposite

pm :
ProductionManager

wm : WidgetMaker

manager : Manager
plays

org : WidgetDep
Organiser

orgPlayer :
WidgetDep

OrganiserPlayer

Organiser
role instance

Organiser Player

168 PART III ROAD Framework and Discussion

9.2.3. Preventing unauthorised communication
The next section of the test harness demonstrates how non-contracted communication is

prevented. As the contract between ProductionManager and WidgetMaker has not been

created yet, the framework will prevent the invalid CCA between two uncontracted

roles. The order of widgets is placed by calling the method do_placeOrderWidgets() of

ProductionManager (i82 to i94). The method prompts the user to enter a number. After

taking the input of the number of widgets required from the user, the

ProductionManager sends request to WidgetMaker. The invalid CCA between

uncontracted ProductionManager and WidgetMaker is prevented (o13).

 Similarly, when the Foreman attempts to send messages to ThingyMaker for thingies

to be made, these messages are blocked since, at this stage (i107), the Foreman and

ThingyMaker are uncontracted roles. Listing 9-3 below (o26 to o28) shows the status

messages generated by the performative contract.

23 ---- Before contract between Foreman and ThingyMaker is created ----

24 TEST: Should have error non contracted between Foreman and ThingyMaker

25 To user: Enter number of widgets required: 15

26 ---> before a1 do AtoB : call(void widgets.WidgetMaker.do_makeWidget(int)) – Calculate Start time.

27 ---> after a0 error: call(void widgets.WidgetMaker.do_makeWidget(int))

28 X--X CCA call from uncontracted functional role: call(void widgets.ThingyMaker.do_makeThingy())

Listing 9-3: Output showing unauthorised call being prevented

9.2.4. Creating contracts
The contract ProManagerWidgetMakerContract is created between ProductionManager and

WidgetMaker (i99).

 ProManagerWidgetMakerContract contract = new ProManagerWidgetMakerContract(pm,
wm);

Likewise, a contract between the Foreman and the ThingyMaker is created (i117 reflected

o31 to o35) by calling the method

 org.createContract(f, t);

The organiser determines the appropriate contract type based on the type of the roles

passed as parameters. In this case, the terms of the contracts have been hard-coded in to

the contract. A functionally valid structure has now been created. When an order for

widgets is made pm.do_placeOrderWidgets(); (i125), the functional messages can now

flow through the organisational structure.

Chapter 9 A Test Application 169

9.3. Adaptive behaviour
The input from the test harness ends once a widget order has been invoked on the

functionally viable structure. Even though the structure is functionally valid, it is not

necessarily viable in terms of the non-functional requirements expressed in the various

contracts. The rest of the output (o38 to o281) shows how the composite copes with the

changing performance of its ThingyMaker players as the order of 15 widgets is

processed. As, in our simplified example, a widget is made of only one thingy we only

show thingy in the output. The requests from Foreman to ThingyMaker to make thingies

are asynchronous requests. For the order of 15 widgets from the ProductionManager

player, the Foreman will place 15 requests to the ThingyMaker with each request being

for 1 thingy.

 The composite’s organiser (orgPlayer : WidgetDepOrganiserPlayer) uses a basic strategy

when faced with underperformance in a contract. Firstly, it looks to find the player with

the best performance from those it has available. In the case of the test application the

organiser has no discovery mechanism for players – it only has available those that

have been previously made known to it. The organiser then compares the best player’s

claimed performance with the existing player’s actual performance. If the new player’s

performance is better it will use it. If there is no better player, the organiser will then

create another role and attach another player to it so that there are now multiple role-

players performing the function. (In more sophisticated organiser-players more

advanced strategies could, of course, be used.)

 There are two threads running in the background, one is the main thread, the other

one is the thread inside the ThingyMaker role processing the asynchronous messages.

The main thread pushes a message into ThingyMaker role’s message queue (o47). The

message processing thread then pops the message out and processes it. The first thingy

is made by badThingyMakerPlayer in 10 ms Line (o50). The elapsed time is slightly more

than 10 ms (o53 shows 15 ms) because of the delay while the message is inside the

queue. The performance of the badThingyMakerPlayer progressively degrades (o64 to

o81) until it reaches 94 ms and it is in breach of the contract requirements. The

organiser then replaces the badThingyMakerPlayer by a better player (o89). In this case,

the better player is either foremanPlayer or goodThingyMakerPlayer as they both have the

performance of 20 ms. The choice is random and foremanPlayer is chosen.

 The configuration of the WidgetDepComposite instance is thus changed

dynamically. The foremanPlayer is now assigned to both Foreman and ThingyMaker roles.

170 PART III ROAD Framework and Discussion

Figure 9-4: The Configuration of WidgetDepComposite Is Changed Dynamically.

The Foreman player takes on the ThingyMaker role.

The next thingy is nominally made in 20ms by this newly assigned ThingyMaker player

(o98), although in this case queuing overhead results in a measurement performance of

93 ms (o101). Since we have just changed the player, the average performance of this

new player is calculated based only on the new player’s performance. This performance

once again is in breach of the contract requirements. However, there is no better player.

The organiser detects that the composite has unused resources; in this case,

goodThingyMakerPlayer and badThingyMakerPlayer. To minimise the change in the

configuration, it tries to utilise one player at the time. To utilise a ThingyMaker player, it

has to create a new ThingyMaker role, and create a contract between this new

ThingyMaker role and the existing Foreman. It then binds the best available player (in this

case, goodThingyMakerPlayer with a performance of 20 ms) to the newly created

ThingyMaker role.

 The new configuration is now shown in Figure 9-5.

Figure 9-5: Re-configuration of the role structure – another ThingyMaker role is created

 Since there is a message processing thread inside each ThingyMaker role instance,

there are three threads running at this moment. One is the main thread, and the other

two are threads inside two ThingyMaker role instances. The main thread is putting

messages from Foreman to the two ThingyMaker instances, and the other two threads are

f : Foreman t : ThingyMaker newTM :
ThingyMaker

foremanPlayer
: SkillfulEmployee

badThingyMakerPlayer
: LazyEmployee

goodThingyMakerPlayer
: SkillfulEmployee

f : Foreman t : ThingyMaker

badThingyMakerPlayer
: LazyEmployee

foremanPlayer
: SkillfulEmployee

goodThingyMakerPlayer
: SkillfulEmployee

Chapter 9 A Test Application 171

processing the messages. The work allocator provided by the framework determines

which role receives the message (in this case a round-robin allocation scheme has been

designated in the Foreman’s MessageRoleTable when the FTContract is created). The

output at this point is quite hard to follow because these threads are executing

independently.

 As the goodThingyMakerPlayer participates in creating thingies (o153) the elapsed

time and average are calculated separately for each of the players. At the end of the

output, the program does not terminate, since the main thread finishes but the other two

threads in ThingyMaker instances are still running and waiting for new messages in their

queues.

9.4. Heterogeneous players
The ability of the ROAD framework to cope with heterogeneous players is tested using

a separate test harness. This test harness is substantially the same as the one in

Appendix A except in this case a wsThingyPlayer of type ThingyPlayerWebServiceProxy is

employed. A Web service to make thingies is created and run on a server. The initial

composite configuration is shown in Figure 9-6 below.

Figure 9-6: Using a Web service player

 In the case of a Web service player, the organiser has two bindings to control: the

binding between the role and the player (in this case a proxy for the Web service), as

well as the binding between the proxy and the Web service itself2. Using the Apache

Axis platform to provide the implementation of SOAP (Apache Web Services Project,

2006), the proxy-service binding merely involves setting the endpoint URL of the

service as follows:

2 This is slightly different approach to that described in Section 5.5 as there is no adaptor attached to the
role. Rather the proxy is the player and there is an extra binding.

f : Foreman t : ThingyMaker

badThingyMakerPlayer
: LazyEmployee

foremanPlayer
: SkillfulEmployee

wsThingyPlayer :
ThingyPlayerWebServiceProxy

/ThingyMakerPlayerWS.jws

Alternative
Binding

Web Service

Organiser sets
WS end point

172 PART III ROAD Framework and Discussion

 String endPoint = "http://[some
url:port]/axis/ThingyMakerPlayerWS.jws";
 wsThingyPlayer.bindToNewEndPointService(new URL(endPoint));

In terms of adaptive behaviour the Web service proxy wsThingyPlayer appears like any

other player. Performance of the service is measured in exactly the same way, and the

same mitigation strategies can be used. The only difference with the standard case is

that at runtime, the organiser has an additional level of indirection available to it by

controlling the Web service end point.

9.5. Summary
The above test application demonstrates the basic adaptive behaviour of the ROAD

framework, including the creation of new roles and contracts, as well as the selection of

players. In addition the test application shows how unauthorised communication is

controlled and how ROAD handles heterogeneous players. The adaptive behaviour

demonstrated in the test is in response to changes in the performance of players, rather

than changes in the requirements set in the contracts. However, as the adaptive

behaviour is triggered in response to the difference between requirement and

performance, perturbation caused by changing requirements is substantially similar to

the case tested here. The above test example also focuses on the adaptive behaviour

within a single composite as it plays a role in an enclosing composite (in this case

simulated by the test harness). The next chapter presents a design case study that shows

how a ROAD application would be created that involves multiple levels of composites.

The performance of the ROAD framework is then discussed in Chapter 11.

10

A Design Case Study
in Service Oriented Computing

This chapter demonstrates the application of ROAD to a domain that contrasts with our

running example, the Widget department. This case study shows how a Book Broking

service can be designed to assist a book purchaser (a large library) effectively acquire

books from various book sellers via the Web services those sellers provide.

 This case study highlights a number of different characteristics of ROAD. These

include:

• How ROAD can be applied to Service Oriented Computing (e.g. Web services),

in particular the mediation between changing requirements and the changing

provision of services.

• The use of ROAD in an information system rather than a manufacturing control

system.

• Types of abstract performative contract suitable to commercial inter-

organisational contracts (as distinct from intra-organisational contracts such as

supervisor-subordinate, peer-peer, etc.).

• The use of contracts which govern ‘long-lived’ transactions.

• The ability to represent ‘virtual enterprises’1 using ROAD. Transactions in these

enterprises are not entirely ad hoc, but occur in the context of dynamic longer

term relationships.

1 For example, as covered by IFIP working group 5.5 (Cooperation Infrastructure for Virtual Enterprises
and Electronic Business - "COVE") http://www.ifip.org/ or the Society of Collaborative Networks
http://www.uninova.pt/~socolnet/

174 PART III ROAD Framework and Discussion

• The creation of protocol clauses from sequences of transactions.

• The measurement of non-time based utility in the performance of a contract. A

number of utility functions described in the case study are informational

representations of the state of the domain (e.g. financial and physical domain)

rather than a measurement of the time of the interaction itself.

• The aggregation of compound utility functions to determine the over-all utility of

a relationship.

• The design of composites so that role abstractions in a composite are always kept

at the one level of abstraction. In ROAD, roles are not decomposed into other

roles within a composite; rather, roles are always played by loosely coupled

players. It is these composite players that decompose the function into the

(internal) roles, and these players can always be separated from the (external)

role they play. Highly adaptive systems can thus be created, because the

decomposition (not just the configuration) can always be changed at runtime.

The chapter is structured as follows. The first section describes the business context of

the case study, and defines some relevant system requirements. The second section

presents a high-level ROAD design of the system where composites and roles are

assigned responsibilities in fulfilling the system’s requirements. Section 10.3

decomposes the composites identified in the high-level design into roles. Section 10.4

specifies some of the contracts between these roles. The fifth section discusses the

management interface for a composite in terms of the various types of utility objects

that are passed over that interface. Section 10.6 illustrates the adaptive behaviour of the

system, and then 10.7 discusses the case study as an example of ‘application-specific’

service-oriented middleware. The chapter is briefly summarised in Section 10.8.

10.1. Context and system requirements
A large institutional library purchases many books from many suppliers. This

purchasing is currently the responsibility of the Acquisition Department (AD) that

works in collaboration with other individuals/departments (Librarians, Accounts, etc.).

The same book can often be sourced from multiple suppliers.

 Because the library is such a large purchaser of books, its suppliers have an

interest in providing a high level of service to the library (competitive prices, quick

turn-around etc). Likewise the library has an interest in maintaining good working

relationships with key suppliers. It generally tries to limit the number of suppliers in

order to keep administrative overheads down. Ordering through a limited number of

suppliers also enables the library to place larger orders with those suppliers and thus

Chapter 10 Design Case Study in SOC 175

negotiate quantity discounts. As distinct from an individual purchase transaction, the

terms of a library-supplier relationship are more long-lived. The properties of a

relationship between the library and a supplier often vary. These variables (we will call

them “terms of trade”) could include:

• payment on invoice or statement

• time from order to delivery (average, range, deviation, maximum, ...)

• terms of payment (prepayment, on invoice, 30 days, 60 days, ...)

• discount on RRP, if any

• who pays freight

• reliability of supplier with respect to previous deliveries

• product range supplier has available

• duration of relationship

• value of trade with supplier

• reputation of supplier (particularly if prepayment is required)

• and so on ...

The library has set the values of its desired outcomes of these set of variables (e.g. low

price, payment 30 days on statement, freight free-into-store, delivery not more than 2

weeks unless otherwise specified, and so on). The Acquisitions Department currently

use these policies to negotiate terms of trade with individual suppliers.

 In recent years the choice of suppliers available to the library has greatly expanded

(e.g. the library can now order books directly from overseas). This has resulted in

increased price competition from suppliers. Also, the ordering and payment for books

can now be transacted on-line. To take advantage of these changed market conditions,

the library would like to partially automate the process of search, selection and

payment for its books. In order to obtain competitive prices, the library plans to

develop an in-house automated broking service (“the Broker”).

 This service will provide a Web Service interface to the library, and will purchase

books automatically using the suppliers’ Web services interfaces2. Many book suppliers

provide automated Web service interfaces for book search, quoting, ordering and

payment. The protocols for these transactions and the terms of trade vary between each

supplier, and the Broker needs to be able to work with all of them. The responsibility of

the Broker is to source the books needed by the library with optimal terms of trade for

2 Some book sellers already provide Web services. For example, the XMethods site
http://xmethods.net/ve2/index.po lists a number of book seller Web services e.g.
http://www.abundanttech.com/webservices/bnprice/bnprice.wsdl
http://majordojo.com/amazon_query/amazon_query.wsdl

176 PART III ROAD Framework and Discussion

the library, while maintaining strong relationships with suppliers. The Broker therefore

has to assess the value of each transaction to the library (not just the price). It also has

to ensure that the library and supplier have matching payment and delivery protocols.

 In assessing the library’s optimal terms of trade, the Broker has to abide by the

purchasing policies and preferences set by the library. These preferences often have to

be traded-off. For example, the Broker can source books either locally or from

overseas. While overseas books are often cheaper, delivery times are typically longer.

Methods of payment also vary between local and overseas suppliers. Most (not all)

local suppliers are happy to supply books on invoice as the library is a reliable payer.

Overseas suppliers invariably want payment up front. The library therefore sets a

purchasing policy (general terms-of-trade) that provides rules to the Broker so that it

can trade-off these variables. For example, it instructs the Broker that it prefers to pay

on statement or on invoice, yet it is prepared to pay upfront if the total cost saving is

greater than 15% of the book(s) price, and the supplier has a good reputation.

 The advantage for the Library using the Broker is that the Broker hides many of

the details of relationships with suppliers, and automates the supplier selection process.

Once its broking service is established, the Library hopes to be able to sell the service

to other libraries. This would have the dual benefit of providing fee-for-service income

to the Library, and of increasing its buying power through an increased volume of

orders. The Library therefore requires that the Broker’s architecture be easily extensible

so that it can cope with multiple libraries. The Library, Broker and the suppliers can be

thought of as forming a ‘virtual enterprise’ that creates dynamic business relationships

between its entities.

10.2. High-level ROAD-based design

10.2.1. Single library
To design a role-based system that meets the requirements set out in the above

scenario, we decompose the system into composites that play a role with respect to the

system. These composites are themselves made up of interacting roles, all of which are

at a similar level of abstraction, and within a single domain of control (e.g. have a

single owner). The Library Book purchasing system can be viewed as a virtual

enterprise that consists of three composites and a number of other players. The

composites are the Library itself, the Acquisitions Department composite that plays the

Acquisitions role within the library, and a Book Broker composite that supplies the

Acquisitions Department with books. An overview of the design is illustrated in

Figure 10-1 below. This preliminary design does not include payment or delivery

Chapter 10 Design Case Study in SOC 177

mechanisms – we assume payment is somehow made and recorded at some point in the

transaction process, and that the book is somehow delivered to the library after

purchase.

Figure 10-1: Library Book Broker Virtual Enterprise – example instantiation within a

single library composite

 Note that the structure of the Acquisitions Department and the Book Broker are

both largely generic. The roles and their relationships in these composites are typical of

purchasing and broking functions. As such, these composites could be specialised

instances of more generic composites (e.g. the Book Broker is a special case of a

Broker).

 Also note that in the Broker composite each Vendor is represented by a different

role, rather than there being a single Vendor role which is attached to different Book

Seller players at different times3. This is because the agreed specific terms of trade and

history of transactions need to be persistent for each Shopper-Vendor relationship, i.e.

contract4. As shown in Figure 10-1, the organiser of the Book Broker (BBOrg) receives

preferences and constraints (general terms-of-trade) from the organiser of the

3 This is not just an implementation issue, because if there is only one role for which players are selected
then conceptually selection is the responsibility of the Broker Organiser role. Otherwise choosing a
supplier is a work allocation task that is performed by the Shopper.
4 In implementing these contracts it would be sensible to store their state in a common database so that the
Broker organiser BBOrg can run queries across contracts. As transactions pass through the contract, it calls
update queries on the database

o: Orderer s: Supplier

r: Receiver

Book Broker
Acquisitions

Department (AD)

b: BBOrg a: ADOrg

preferences

orders

GG

Amazon

Barnes and
Noble

Harper
Collins

 constraints

plays (functional interface)

s:
Shopper

bf: Book
Finder

Books In
Print

Specific
 Terms-of-Trade

Library Composite

ac:Acquisitions

General
 Terms-of-Trade

lo:Library
Org

↓ policies, budget

Book
Sellers

management interface

e1:Employee

e2:Employee

a1:Agent

v4:
Vendor v3:

Vendor v2:
Vendor v1:

Vendor

178 PART III ROAD Framework and Discussion

Acquisitions Department (ADOrg). BBOrg interprets these general terms-of-trade into

specific terms-of-trade appropriate to each vendor, and stores them in the Shopper-

Vendor contracts. The roles within these composites are discussed in Section 10.3.

10.2.2. Multiple libraries
Extending the design of the Broker to handle multiple library clients is straightforward,

as shown in Figure 10-2 below. We will call this composite a Broking Service. A

Broking Service consists of a number of Client-Broker relationships, there being one

broker for each client. The contracts between a Client and Broker store a copy of the

general terms-of-trade for that Client. For each library that uses the Broking Service, a

separate Client role is created that acts as proxy for that library. All functional

interactions with a library pass through its Client role. Each Broker role instance is

played by a BookBroker composite (as in Figure 10-1 above). The organiser of the

Broking Service composite passes the general terms of trade for a particular library

client of the organiser of the contracted BookBroker composite (not shown in the

figure). That BookBroker organiser then creates the specific terms-of-trade between

Shopper and Vendor roles inside its composite, storing these requirements in the

appropriate Shopper-Vendor contract. Note that this extension of the design can be

achieved without making any changes to the previously defined Library and

BookBroker composites.

Figure 10-2: Independent Broking Service instance with multiple library clients

 The Broking Service instance illustrated above is associated with two types of

library. The first type of library is a ROAD composite, as instanced by Libraries lib1

Broking
Service

lib1:
Library

bso:
BSOrg

b1:
Broker

c2:
Client

Functional
Interface

Management
Interface

c1:
Client

c3:
Client

b2:
Broker

b3:
Broker

lib2:
Library

Library 3

Supplier

bb3:
BookBroker

Fixed general
 terms-of-trade
for Client c3

bb2:
BookBroker

bb1:
BookBroker

Dynamic general
 terms-of-trade for
Clients c1 and c2

set by BSOrg

Supplier

Chapter 10 Design Case Study in SOC 179

and lib2 that play Client roles c1 and c2 respectively. As both the Library and the

Broking Service are ROAD composites, they both present a management interface over

which changing NFRs and performance data flow between their respective organisers.

In this case, the organisers within the libraries’ acquisition departments send the

Broking Service NFRs relating to their general terms-of-trade. The organiser of the

Broking Service (BSOrg) stores these NFRs in the respective Client-Broker contracts,

and transmits them to the organiser (a BBOrg) of the appropriate Book Broking

composite (not shown). We will discuss this management interface in more detail in

Section 10.5.

 The second type of library (Library 3) is not a ROAD composite. It has a

functionally compatible Web service interface through which it interacts with the

Broking Service, but it has no management interface or organiser. Although Library 3

can still order books, there is therefore no mechanism for dynamically changing the

general terms-of-trade (NFRs) between Library 3 (playing the c3 Client role) and its

Broker,. These NFRs would need to set statically in advance (or through some form of

supervisory control via BSOrg). As a further enhancement of its services, the Broking

Service could offer a public Web service interface for individual (non-institutional)

customers who do not require a long term relationship with book suppliers. The

organiser would dynamically create ad hoc client and broker roles, and a broker player.

The contracts in the composites would have fixed terms-of-trade (e.g. pay up front).

 Note that in the above design, a composite Library and a Broking Service both

play a role in each other’s organisation, as indicated in Figure 10-2 by the plays

relationship arrows between the composites. The Library’s AD Supplier role is played

by a Broking Service, and the Book Service’s Client role is played by a Library. The

implication of this is that all functional messages between the composites pass through

these respective roles. Such a structure would suit composites in different

organisational domains (e.g. with different owners), because each composite has an

internal role that is a proxy for the other composite. This will assist the decoupling of

the Broker service in the event of it being ‘spun-off’ as a separate business entity.

10.3. Decomposition of composites
The responsibilities of the AD, Book Broker and Broking Service composites with

respect to the book purchasing virtual enterprise are defined by the roles they play, i.e.

the Library.Acquisitions role and the AD.Supplier role. A Book Broker and a Broking

Service are both Supplier role players, and would look functionally identical to a

composite Library. The only difference between them is that the Broking Service can

180 PART III ROAD Framework and Discussion

handle multiple Library clients. In this section, we will examine in more detail the

single library composition shown in Figure 10-1, and decompose the responsibilities of

the AD and Book Broker composites into their internal roles.

10.3.1. Responsibilities of the Acquisitions Department
The Library’s Acquisition Department (AD) is responsible for acquiring books on

behalf of the Library. An AD composite models the relationships between roles

involved in the acquisition process: Orderer; the Receiver; and the Supplier. In the

instantiation of the system shown Figure 10-1 the Orderer and Receiver roles are

played by library employees (using an appropriate UI) and the Supplier role is played

by a Book Broker (or Broking Service) composite.

Orderer role position description
• Receive requests for books from the Library. (These requests are delegated from

the composite’s MessageRoleTable.)

• Prioritise orders

• Request quote from Supplier

• Check sufficient funds available

• Create order (with order number) and forward orders to the Supplier (played by

the Broker)

• Follow protocol for the purchase of books as defined in its contract

• Request and receive funds from the Library. Keep budget actual balance updated.

Supplier role position description
• Receive requests for quotes and orders from Orderer

• Provide quotes

• Fill orders

• Receive notification from the Receiver of receipt of the ordered items. (The

Supplier role is played by the Broker which calculates performance data (e.g.

delivery time) of particular orders because it involves the physical delivery of

items.)

Receiver role position description
• Physically check in-coming books against delivery and order documentation

• Inform Supplier of receipt of order.

• Notify Supplier of any discrepancies between what was ordered and what was

received.

Chapter 10 Design Case Study in SOC 181

AD Organiser role (ADOrg) position description
• Sets the general terms of trade (NFRs) in the Orderer-Supplier contract for

purchasing books from the polices set by the library.

• Notifies the organiser of the Broker (BBOrg) of those terms. These NFRs can

either be firm constraints or preferences.

• Binds players to roles (in the case of the AD composite these relationships would

be relatively stable).

• Handles exception passed to it from the BBOrg, e.g. unable to find supplier of

book given constraints.

10.3.2. Responsibilities of the Book Broker
Externally the BookBroker composite needs to meet the requirements of the Supplier

role in the AD composite. Internally the Broker is decomposed into Shopper, Vendor

and BookFinder roles. The Shopper role receives the AD’s book orders by delegation

from the Broker composite. The Vendor roles are proxies for book supplier Web

services, and the BookFinder role is proxy for a book search service (played by the

BooksInPrint Web service).

Shopper role position description
• Send queries to the BookFinder role to find which suppliers have copies of the

book(s) that match the library’s order.

• Find which potential suppliers have existing contracts (agreed terms-of-trade)

with the library.

• If none of the suppliers are currently contracted with the library client, inform the

organiser so a new contract can be negotiated

• Send requests for quotes to the contracted Vendors who stock the book

• Evaluate quotes to find the most favourable. This is a special case of the work

allocation function discussed in Chapter 8.3.2.

• If there is an acceptable offer order the book(s) according to the protocol defined

in the contract.

• Send notification of the order (Order No, Price) to the composite’s role allocation

table (this is then passed to the Library via its AD.Supplier role).

• If no acceptable offers are forthcoming, inform the composite.

Vendor role position description
The Vendor role is a proxy for an external book supplier. Book suppliers use various

protocols but all have the following responsibilities:

182 PART III ROAD Framework and Discussion

• Provide a response to following queries

o whether a book is in stock and how many copies are available

o quote prices on an order including transport charges

• Fill a book order based on a quote and arrange delivery

• If required the supplier may also be required to invoice/provide statements to the

client directly

• Accept payment

BookFinder role position description
• Accept queries about the availability of book(s)

• Return name of book vendors who have stock of those books

Broker Organiser role (BBOrg) position description
We assume that the BBOrg player has a discovery mechanism for Web service book

suppliers, and that these services provide adequate service descriptions (including use-

protocols). If appropriate the BBOrg player would also negotiate specific terms of trade

with external book suppliers consistent with the Library’s general terms-of-trade.

• Create new Vendor roles, and Shopper-Vendor contracts.

• Get general terms-of-trade preferences from the organiser of the enclosing

composite (ADOrg or BSOrg)

• Set the terms of the contracts between the Shopper and specific Vendors based on

specific client-supplier relationship information (e.g. required method of

payment).

• Revise contracts if general terms-of-trade are revised.

10.4. Contracts
As pointed out in Chapter 8, role definitions are aggregations of the contract terms that

bind them, and players must be compatible with these role definitions. This section will

define the contracts in the AD and Broker composites. We will firstly define some

abstract performative contracts that define the interaction patterns, and then specify the

concrete contracts.

10.4.1. Abstract performative contracts
Our design identifies two types of abstract performative contract: a Buyer-Seller

contract and an Information Peer-Peer. For example, the interaction in a Client-Broker

concrete contract can be generalised as a BuyerSeller performative contract as shown in

Figure 10-3 below.

Chapter 10 Design Case Study in SOC 183

Figure 10-3: The Client-Broker relationship generalised as a Buyer-Seller contract

All concrete contracts in the design can be inherited from the Buyer-Seller and

Information Peer-Peer abstract contracts as shown in the table below.

Table 10-1: Inheritance from common Performative Contracts

Performative Contract Functional Contract
Buyer-Seller Orderer-Supplier
 Shopper-Vendor
 Client-Broker
Information Peer-peer Supplier-Receiver
 Shopper-BookFinder

We next define these two performative contracts in the form previously discussed in

Chapter 6.

Buyer-Seller Performative Contract
The Buyer-Seller performative contract (Figure 10-4) defines the general form of

communication between a Buyer and Seller. All transactions are asynchronous, that is,

in the form of an initiated CCA and a matching response (e.g. GetQuote, Quote).

Named transactions that can be initiated by the Party A (the Buyer) start with the letter

“a” (e.g. a2), while Party B’s (the Seller) transactions start with “b”. As described in

Chapter 6, protocol clauses are sequences of transactions. The example Buyer-Seller

contract has a number of named protocols (p1-p6) that represent prototypical

sequences of transactions that are permitted under the contract. These can be used to

enforce appropriate business protocols. For example, the “pay up front” protocol p1

consists of the transactions a2,a3,b2; i.e. (Order , OrderConfirm), (Pay-Receipt),

(Deliver, Acknowledge). Protocols can also be formed from other protocols. For

example, the “quoted pay up front” protocol p4 consists of transaction a1 (GetQuote,

Quote) followed by protocol p1. A concrete contract that inherits from Buyer-Seller

would have a subset of these protocol clauses activated; activations which, if necessary,

changed at runtime. The final section of the contract is the ‘performance measurement

Client

Broker

ClientBroker
Contract

Buyer

Seller

BuyerSeller
Contract

Functional level Control level

Functional
roles

Performative
roles
(note: not
“positions”)

184 PART III ROAD Framework and Discussion

points’. These define the before and after points at which change of state can be

measured to evaluate the performance of an obligated party.

Performative Contract Name: Buyer-Seller
Parties:
 Party A: Buyer
 Party B: Seller

CCAs:
 (shorthand CCA code in brackets)
 GetQuote (gq), Order (o), Pay (p), Acknowledge (ack)
 Quote (q), OrderConfirm (oc), Deliver (d), Invoice (inv)

Transactions:
 Party A initiated terms
 a1: GetQuote-Quote
 a2: Order-OrderConfirm
 a3: Pay-Acknowledge

 Party B initiated terms
 b1: Invoice-Pay
 b2: Deliver-Acknowledge

Protocols:
 (Protocols are sequences of transaction terms – all Party A initiated)
 p1: a2, a3, b2 //pay up front
 p2: a2, b2, a3 //pay on delivery
 p3: a2, b2, b1 //pay on invoice
 p4: a1, p1 //quoted pay up front
 p5: a1, p2 //quoted pay on delivery
 p6: a1, p3 //quoted pay on invoice

Performance measurement points:
 a1: price(); discountRRP(); ... i.e. before and after a1
 b2: daysToPay() i.e. before and after b2
 a2, b2: deliveryTime() i.e. before a2 and after b2
 p1: deliveryTime() i.e. before and after p1

Figure 10-4: Buyer-Seller Performative Contract

Information Peer-Peer Performative Contract
An Information Peer-Peer contract shown in Figure 10-5 allows the contracted parties

to query each other, or to provide unsolicited information. This is similar to the Peer-

Peer contract in our Widget making application, except that one peer cannot invoke a

DO CCA in the other. Note that, as this contract defines a simple request-response

transaction, no multi-transaction protocols are defined. Additionally, as the contract

involves information exchange only, no performance measure points are defined

(although it would be possible to define one for timeliness of the response).

Chapter 10 Design Case Study in SOC 185

 Performative Contract Name: InformationPeerPeer

 Parties:
 Party A: Peer1
 Party B: Peer2
 CCAs:
 (shorthand CCA code in brackets)
 Query (qry), Inform (inf)
Transactions:
 Party A initiated terms
 a1: Query, Inform
 a2: Inform
 Party B initiated terms
 b1: Query, Inform
 b2: Inform
Protocols:
 NA
Performance measurement points for utilities:
NA

Figure 10-5: Information Peer-Peer Performative Contract

10.4.2. Concrete functional contracts
This section specifies some example concrete contracts from the Book Broker

application. A concrete contract defines the specific messages each party can send to

the other, and associates those invocations with a CCA. As previously, the convention

is that the CCA of the method invocation is indicated as a prefix (e.g. gq_). As pointed

out above in section 10.4.1, the Orderer-Supplier, Shopper-Vendor and Client-Broker

concrete contracts all inherit from the abstract Buyer-Seller contract. These concrete

contracts all serve the same function in different composites, indeed they could be all

implemented with the same concrete contract type, provided the respective interfaces in

the roles (e.g. Supplier, Vendor) are the same. We will assume this is the case and will

define a single concrete contract BookBuyer-Seller to cover all the above associations.

Name: BookBuyer-Seller contract extends Buyer-Seller

Orderer initiated
 gq_GetQuote(Items)
 o_OrderBooks(OrderNo, Items, MaxTimeToStore, QuoteID)
 p_PayOrder(PayID, OrderNo, InvoiceNo, Amount)
 ack_OrderReceived(OrderNo)
 ack_OrderReceived(OrderNo, Discrepancy)
Supplier inititated
 q_Quote(QuoteID, Items, Price)
 oc_OrderConfirmed(OrderNo, Price, SupplierID)
 oc_OrderConfirmed(OrderNo, False, Reason) //order not confirmed
 d_DeliveryNote(DeliverID, OrderNo)
 i_Invoice(OrderID(s), Amount)
 ack_Receipt(InvNo, Amount)
 ack_Receipt(OrderNo, Amount)

Figure 10-6: BookBuyer-Seller Concrete Contract

186 PART III ROAD Framework and Discussion

 Recall that the terms of a contract are created dynamically, including details of the

signature(s), the synchronisation type, and any utility function used to measure the

performance of the term. Contract clauses that cover any protocols to be followed or

other general clauses are also dynamically added. In our example, utility functions

associated with BookBuyer-Seller contract terms could measure Price, DeliveryTime,

or any of the parameters associated with the general terms-of-trade listed in Section

10.1. Utility function classes (as ROAD is written in Java these functions have been

implemented as classes) have methods for setting the expected value of the parameters

(e.g. for a DeliveryTimeUtility these values might be TargetMeanDeliveryTime,

BreachThresholdDeliveryTime, etc.). As well as storing the required performance, a

utility object stores the actual performance based on the history of interactions between

the contracted roles. Each utility class implements a calculateUtility() method that

returns a value associated with the contract performance (e.g. InBreach,

UnderPerforming, Performing). Protocol clause classes are also dynamically added to

contracts. These classes maintain state machines that define acceptable sequences of

terms (e.g. as defined in the Buyer-Seller performative contract in Figure 10-4).

 Other concrete contracts would be similarly specified. For example the Supplier-

Receiver contract is much simpler than the Buyer-Seller performative contract. It is

only used to create a connection and prohibit unauthorised interaction, rather than

measure performance. As shown in Figure 10-7, the concrete contract merely associates

particular method invocations with CCAs defined in the InformationPeerPeer

performative contract.

 Name: Supplier-Receiver contract extends InformationPeerPeer

 Receiver initiated
 inf_OrderReceived(OrderNo)
 inf_OrderReceived(OrderNo, Discrepency)
 Supplier initiated
 qry_GetOrderStatus(OrderNo)

Figure 10-7: Supplier-Receiver Concrete Contract

10.5. Composite management interfaces
A composite player has to meet the performance requirements (NFRs) that are

contained in the contract(s) that bind the role it plays. For example, the BookBroker

composite plays the AD.Supplier role, and as such it needs to meet the NFRs that

obligate the AD.Supplier role. The contracts that define the AD.Supplier role are the

Orderer-Supplier contract and the Supplier-Receiver contracts. However, only the

Orderer-Supplier contract has NFRs defined against its terms, therefore the

Chapter 10 Design Case Study in SOC 187

BookBroker composite only has to fulfil the requirements associated with that contract.

As discussed in the previous section, these NFRs are defined in the AD’s Orderer-

Supplier contract as instances of utility classes attached to the contract’s terms. Copies

of these utility objects are passed by the organiser of the super composite (ADOrg) to

the organiser of the player composite (BBOrg), as shown in Figure 10-8 below.

Figure 10-8: Non-functional requirement and the measurement of their performance

 Once the organiser of a composite is informed of NFRs in the form of utility

objects, these composite-wide requirements (in our example, the general term-of-trade)

need to be translated by the organiser into performance requirements for the utility

objects associated with the contracts it controls (e.g. instances of the Shopper-Vendor

Contracts). The organiser also uses this required performance information to compare

the performance requirements of a role instance (e.g. v1) with any claimed performance

of players that are candidates to play that role. If a role is bound by more than one

contract, the organiser may need to aggregate NFRs into a consolidated position

description for the role.

 In our earlier example of a Widget Department, all utility was time-based; that is,

performance could be measured numerically. However, not all NFRs are necessarily

measured numerically. For example, preferences might be expressed for the type of

protocol to be used. A NFR could consist of a list of protocols in preferential order. For

example, the order of preference for the protocols (as defined in the Buyer-Seller

performative contract) might be p6, p5, p4, while protocols p1, p2, p3 are unacceptable.

Service1
Player

s:
Shopper

v1:
Vendor

Contract measures actual performance of
an obligated party (v1 played by Service1)

by monitoring interactions

Players may
haveclaimed
performance

Service2
Player

Composite players may have a required performance
as defined in utility object attached to the terms of the
contracts that bind the roles they play

Book Broker

b: BBOrg Organiser translates
 composite requirements
into required performance
for contracts

Management
interface

a: ADOrg

dTUte:
DeliveryTime

Utility

o: Orderer

s: Supplier

188 PART III ROAD Framework and Discussion

 Utility objects may also be multi-variant, in that they contain a number of

performance variables that need to be traded-off against each other. The trade-off may

be based on rules contained in the calculateUtility() method of the utility object. For

example, the library has a requirement that it is only prepared to deal with untrusted

parties on the basis of Protocol p6 (pay on quoted invoice). Alternatively, a multi-

variant value function (Keeney and Raiffa, 1976) could be used as the basis for

evaluating particular trades or comparing the offers of particular vendors. Typically,

such value functions reduce all attributes to a numeric value that allows these attributes

to be compared. The values are then weighted to reflect their relative

importance/preference in trading-off the attributes. The sum of the weighted values

gives a single number that can be used to compare alternatives.

 Table 10-2 below gives some examples of NFRs from the BookBroker. These

include conditions for evaluating numeric and categorical variables, as well as single

and multi-variant conditions.

Table 10-2: Examples of the evaluation of non-functional requirements

 Contractual Requirement Comparative Function

Single Variable
 - numeric Discount RRP > 5% Minimum

(PriceA, PriceB, PriceC, ...)

Single Variable
 - categorical Protocol = (p6 || p5 || p4) PreferredRank(p6, p5, p4)

Multi-variant If Vendor.player.trusted = FALSE
then Protocol = p6

SomeUtilityFunctionMAX
(Price, DeliveryTime, ...)

10.6. Adaptive behaviour
In this section we will describe the adaptive behaviour of the BookBroker composite.

As described in Chapter 7, adaptive behaviour occurs within a ROAD composite and

across composites. Adaptive behaviour within a composite involves the organiser

following strategies for reconfiguration (creating/destroying roles, contracts and role-

player bindings), and regulation (altering the terms of contracts). Adaptive behaviour

across composites involves the transmission of NFRs between composites as described

in the previous section, and the transmission of performance information in the case of

capacity planning or composite underperformance.

 The organiser of the BookBroker composite (BBOrg) first needs to establish

relationships between its library client and various suppliers. The organiser receives

NFRs representing the library’s general terms-of-trade and needs to discover book

Chapter 10 Design Case Study in SOC 189

suppliers with whom it can potential form contracts5. For each of the suppliers that

meet the minimum standard for terms-of-trade, the organiser creates a Vendor role,

binds the external service to that role (i.e. creates the Web service adaptor and sets the

end-point), and creates an instance of a BookBuyer-Seller contract between the instance

of the Vendor role and the Shopper role. Terms appropriate to the specific relationship

(the specific terms-of-trade) are then written into each contract. Adaptation to change in

requirements in this scenario could be triggered by either the client or a vendor wanting

to change the terms of trade. If the organiser can find a mutual accommodation under

the new requirements, the terms of the contract would be rewritten; if not the contract

and role would be destroyed (and thus end the particular relationship to the supplier).

 Once the BookBroker composite structure is established, and the terms of the

contracts written, the composite can respond to book orders. One strategy the organiser

BBOrg could employ would be to create a general utility function that ranks each of

these vendors according to some comparative value function (as in Table 10-2) that

weights each of the client library’s preferences (discount, reputation, reliability

payment terms, etc.) and calculates each supplier performance with respect to those

weighted performance measures. This value function could then be used by the player

of the Shopper role (the Agent a1 in Figure 10-1) to decide where to place an order,

given the list of suppliers (obtained by the external BookFinder service) who have the

book(s). The Shopper may even break the order into a number of sub-orders, if the

utility is greater. Once order(s) are placed and received, performance metrics (e.g. time

to deliver, actual discount received, etc) can be updated in the appropriate Shopper-

Vendor contract and fed back into the evaluation process for subsequent orders.

 If there is no contracted supplier that can supply the book under existing terms of

trade, then the organiser BBOrg is informed. The organiser may have additional

strategies (e.g. search for new suppliers and create new contracts). If the order still

cannot be filled, the problem is escalated back to the library’s Acquisition Department

organiser (ADOrg) who needs to decide if it wants to relax its general terms-of-trade

for that order.

10.7. Discussion - ROAD as application-specific
middleware

This case study highlights that a ROAD composite (sans services) can be viewed as

service-oriented computing middleware (Colman, Pham, Han et al., 2006; Colman and

5 We assume there are external mechanisms for service discovery, reputation assessment, and negotiation
available to the organiser using WS standards such as UDDI, WS-Coordination and WS-Agreement and
that suppliers also support these standards

190 PART III ROAD Framework and Discussion

Han, 2005). By using a common middleware, heterogeneous applications are able to

communicate and collaborate. Middleware technologies also hide complexity and add

value to these interactions. For example, taking a high-level Enterprise Application

Integration (EAI) view, Figure 10-9 is a simple schema of heterogeneous applications

that communicate via a conventional middleware layer that handles various properties

related to their interaction (e.g. reliable messaging, logging, persistence).

Figure 10-9: Conventional Middleware

 In the more open environments typical of service-oriented computing, a number of

shortcomings of the conventional view of middleware become apparent, particularly

with cross-organisational Web services rather than conventional middleware

integration within a single organisation. Cross-organisational composition of services

involves issues such as lack of trust and asynchronous long-lived transactions, as well

as deployment issues such as the location of the middleware in a distributed system

(Alonso, Casati, Kuno, and Machiraju, 2004).

 The other major shortcoming of the conventional middleware concept is the

necessity for all the parties to an interaction to agree on, and use, interoperable

standards. In the fast-changing world of Web services, although the basic technology

for handling point-to-point interactions is well established and accepted, standards for

handling more complex interactions such as WS-Coordination, WS-Agreement, OWL-

S, and so on, are still evolving and are sometimes overlapping, depending on the

domain and the originating standards body (e.g. (W3C, 2004), (OASIS, 2005), (Global

Grid Forum, 2004), etc.). In order to build adaptable applications in this changing and

uncertain technical context, it would be desirable for applications to be able to make

use of heterogeneous standards, while not being bound to any one standard. Although

we cannot do without standards, the challenge remains to create integrated applications

that can make use of the heterogeneous middleware technologies, but that are not

dependent on any particular technology. To use an analogy: programming languages

like Java can run on heterogeneous operating systems by providing an independent

layer (Bytecode running on the JVM) between the application code and the operating

system. In order to preserve this ‘Write Once, Run Anywhere’ approach to software

Library Broker

Middleware Services
Directory, Messaging, Transactions, Security, ...

Book Supplier

Chapter 10 Design Case Study in SOC 191

development, we need to avoid tightly coupling the application to the execution

environment, whether that environment be an operating system or middleware.

 ROAD can be viewed as an “application-specific” middleware. Application-

specific middleware might sound like a contradiction of terms, because middleware

standards and technologies are almost by definition generic. However, in application-

specific middleware, like conventional middleware, all messages between the

component services pass through a middleware layer. In addition, the application-

specific middleware provides adaptive structures for the composition, control of service

interactions, and the measurement of QoS of those interactions. Application-specific

middleware performs no domain-specific function by itself; instead, it provides abstract

functional roles that can be played by other entities. These roles form adaptive

structures, tailored to the particular application, for the composition and control of

service interactions.

Figure 10-10: Schema service composite as application-specific middleware

 As shown in Figure 10-10 above, application-specific middleware can be viewed

as an extra layer that provides a level of indirection and management between services.

This middleware consists of ROAD composite(s) of dynamically contracted roles

which are played by the various services in the composition. The services that play

roles can use whatever middleware standards they are built to, provided the service

composite has adaptors that support those standards. The composite therefore functions

as an interoperability bridge (Emmerich, 2000).

 As well as performing the function of an inter-operability bridge, ROAD

composites as middleware have the advantage of being able to:

Library Broker

MW2

Book Seller

Service Composite Role
Structure

Adaptable domain specific structure
Contracts maintaining

Long-lived transactions, QoS

MW1 MW3

Application-
Specific

Middleware

Conventional
middleware

ROAD framework

192 PART III ROAD Framework and Discussion

• be distributed. Composites are, themselves, services that can be distributed.

• have each business organisation deploy and maintain its own composite that

models its concerns. This would be the case in Figure 10-2 if the Libraries and

the Broking Service had different owners. These middleware composites would

communicate via their management interfaces, and via the functional role they

play in each other’s composite (the Library composite playing the Client role in

the Broking Composite, and the Broking Composite playing the Supplier role in

the Library composite). Ownership of composites is important because the ability

to trigger a change in requirements or structure within a middleware composite

raises the issue of which services have the authority to make changes in the

composite. In our example, we would not want a book seller arbitrarily changing

the terms-of-trade with a broker or client. The ability to distribute and ascribe

ownership rights to composites helps organisations achieve secure cooperation in

open environments.

• be recursively composed so that they can model complex multi-layered business

domains

• have entities that map naturally to those domains. Composites can be used to

model business entities, while contracts also map naturally to cross-

organisational service-level agreements

• adapt to changing requirements and measured performance of the services that

they compose.

To fully implement an application-specific middleware such as ROAD, further work

needs to be done in integrating ROAD composites with standards for service discovery,

coordination and the negotiation of service-level agreements. Research challenges also

remain such as how to dynamically generate adaptors to overcome the heterogeneity of

service middleware technologies; how to represent protocols of services (required order

of exchanged messages); how to address different non-functional requirements such as

security; and how to incorporate mechanisms for negotiation between composites that

belong to different organisations.

10.8. Summary
The above case study presents a role-oriented approach to implementing a composite

application that can maintain dynamic, yet long-term, relationships between

commercial entities via Web service infrastructure. ROAD composites can be used to

model role relationships between business functions, and these composites can be

separately owned, deployed and maintained by different commercial entities. Abstract

Chapter 10 Design Case Study in SOC 193

performative contracts that model business relationships suitable for creating virtual

enterprises are defined. Because ROAD supports heterogeneous players, the model can

include players that are Web services, software components and humans. Role models

can therefore represent processes outside a computational domain; for example, a

receiver player may do a physical check to see if the books ordered have been

delivered. The case study also shows how non-numerical and multi-variant

requirements can be passed as utility objects between composite organisers. ROAD

composites can be viewed as a form of application-specific middleware that acts as an

inter-operability bridge, that is fully distributable, and that maps well to business

organisation and ownership domains.

11

Analysis and Discussion

This thesis presents both a conceptual meta-model for adaptive software systems (in

Part II), and a framework for implementing that meta-model in a runtime system

(Chapter 8). This chapter evaluates the ROAD framework both at the conceptual level

as an approach to adaptive software architecture, and the framework’s current

implementation as a ‘proof-of-concept’ prototype.

 The first section of this chapter evaluates how well the ROAD meta-model

expresses those qualities necessary in an adaptive software system. The ROAD

framework is evaluated in terms of the characteristics we used in Chapter 3 to discuss

the various approaches to creating adaptive architectures.

 The second section of the chapter discusses the prototype implementation in terms

of the runtime overhead it imposes. ROAD defines an organisational middleware

structure through which passes all communication between the application’s functional

runtime entities. This interposed message-intercepting structure creates an overhead

compared to, say, the communication between two directly communicating objects.

The run-time performance overhead of a ROAD application therefore needs to be

characterised relative to such direct communication. We also compare the overhead

imposed by ROAD middleware to the overhead imposed by Web service infrastructure,

which is the predominant middleware for more open inter-organisational application

integration.

Chapter 11 Analysis and Discussion 195

11.1. Comparative expressiveness of the ROAD framework
In the literature review in Chapter 3, a number of adaptive software architectures were

reviewed in terms of a range of criteria. In Section 3.3 these were categorised into

criteria related to (re)configuration of the structure of the software, regulation of

performance of non-functional requirements across that structure, and the nature of

management of adaptation. In this section we will use these criteria (the italicised

numbered points below) to characterise the ROAD framework, and to evaluate how

expressive (capable) it is relative to other adaptive architectures.

1 Configuration

1.1. Reconfiguration possible at runtime.
A ROAD application can create (and destroy) two distinct types of connection at

runtime: contracts between roles, and role-player bindings. It can also create new roles.

These configuration mechanisms are defined in the composite’s organiser role, and the

decisions about reconfiguration are made by the organiser player. However, the current

implementation of ROAD has a limitation in this regard, in that it relies on type-

compatibility to ensure that structures are functionally well composed, rather than

representing the composition using some underlying formalism (e.g. π calculus) that

allows machine reasoning across the entire structure. It follows that the creation of new

types of composition is a human design-time activity rather than an automated runtime

activity, unless it can be supported by external mechanisms for ensuring functional

compatibility such as WSDL/UDDI (not to mention semantic or behavioural

compatibility) or unless compatibility can be checked by very smart organiser players.

1.2. Composition based on declarative description possible at runtime.
In its current implementation, ROAD roles, contracts and composites are Java types

that need to be statically defined. However, these entities can be empty structures, the

contents of which are dynamically created (e.g. terms are added to a contract at

runtime, and roles and contracts are dynamically created by the composite). Instantiated

ROAD composites can therefore be declaratively defined, subject to the types that are

used in the structure being predefined. A future extension to ROAD could use the

reflective capabilities of Java to declaratively define contract, role and composite types.

1.3. Functionally recursive structure.
One of the strengths of ROAD is that it allows recursive composition/decomposition of

composites at runtime. Many dynamic architectures are only concerned with the

dynamic reconfiguration of black-box components. In ROAD, on the other hand,

composites are themselves players that play roles, and these composites can be replaced

196 PART III ROAD Framework and Discussion

or modified at runtime. This facilitates dynamic decomposition as well as dynamic

reconfiguration. In this sense, it is conceivable that, subject to sufficient intelligence in

the organisers, an entire ROAD application could be redesigned at runtime, rather than

being constrained by fixed role or component decompositions. ROAD adaptive

composites can be created representing various levels of the decomposition at different

levels of granularity, with each composite managed independently.

1.4. Non-functional restructuring supported.
In ROAD, roles are instances. It follows that multiple roles can be of the same type, be

created in parallel, and yet serve a single functional purpose. The reality of varying

role-player performance can therefore be reflected in the runtime configuration, rather

than having roles represent only abstract function.

1.5. Elements can be substituted (indirection of instantiation supported).
Like most dynamic architectures, ROAD supports the runtime substitution of

players/components. ROAD supports queuing to maintain communication state during

structural reconfiguration and to cope with player absence (see point 1.8 below).

However, because in ROAD it is the players who maintain domain state, further work

needs to be done to ensure that players can be safely substituted, so that the domain

state of the system as a whole is preserved.

1.6. Supports heterogeneous components.
ROAD is designed to facilitate the composition of heterogeneous players (components,

services, agents, UIs). The adaptors that convert between different technologies are

kept separate from the roles, and can be added dynamically to the composite. The

ROAD prototype implementation currently can work with Java and Web service

players. Further work needs to be done to extend the range of adaptors (e.g. CORBA,

J2EE, FIPA-ACL), and to create mechanisms that can automatically generate adaptors

that are type-compatible.

1.7. Structure is entirely defined and controlled by management.
ROAD maintains a strict separation between process (as performed by the players) and

the structure of the roles and the contracts (as managed by the composite organiser).

The fact that ROAD players are ignorant of the structure facilitates substitutability of

those players. If a player needs to deal with multiple role-players of the same type, this

needs to be done by using data based mechanisms such as tracking transaction IDs,

rather than by players maintaining structural references to each other (e.g. in the

previous chapter’s Book Broker example, the agent playing the Shopper role would use

Chapter 11 Analysis and Discussion 197

Order IDs to distinguish transactions and the role would be responsible for routing

messages).

1.8. Partial instantiation possible.
Message queuing in ROAD roles allows an application that is built using the ROAD

framework to continue to function at some level, even if not all players are present at

any one time in the structure. This approach facilitates player substitution and could be

used to support the lazy instantiation of players.

1.9. Formal reasoning about structure possible.
As mentioned in point 1.1 above, ROAD does not currently support formal reasoning

across a composite structure, or the checking of compatibility other than basic type

checking. In open systems, functional interfaces not only have to be syntactically

compatible, but also need to be semantically and behaviourally compatible. Ensuring

compatibility of such interfaces is still very much an open area of research. Preliminary

work has been done on developing a relational structure of ROAD programming

entities which will allow some checking for integrity (see the discussion of

ROADmaker in Chapter 8.7), but this work is outside the scope of this thesis.

2 Regulation

2.1. Non-functional regulation possible.
Contracts are first class entities in ROAD, and provide the basis for implementing non-

functional regulation. Contracts store non-functional requirements in the form of utility

functions attached to contract terms. They also provide mechanisms that enable the

measurement of performance with respect to those requirements. These requirements

can be altered dynamically and transmitted between composites.

2.2. Control dynamics supported.
While control dynamics is not explicitly addressed in ROAD, the ability to pervasively

define measurement points (and thus control variables) throughout the structure

provides the basis for implementing control-theoretic concepts such as control of

hysteresis and feedback. Domain-specific organiser players would function as dynamic

controllers. The specification of the capabilities of these players is beyond the scope

of the ROAD framework and this thesis.

2.3. Utility can be defined arbitrarily
The ROAD framework provides some generic time-based utility functions, but any

utility function that the application programmer wants to define can be attached to the

performance measurement points in a contract term.

198 PART III ROAD Framework and Discussion

2.4. Utility requirements can be changed dynamically.
In ROAD, the requirements of a contract can be dynamically changed by altering the

utility function settings associated with a contract term. These utility functions are Java

objects, and their parameters can be changed at runtime. These changes to NFRs are

instigated by the composite organiser, who creates them in response to the NFRs it

receives over its management interface.

2.5. Type of utility can be changed dynamically.
New types of ROAD utility function can be dynamically attached to contract terms at

runtime. During an interaction, when a measurement point in a contract term is

reached, any utility function attached to that point will be evaluated.

2.6. Multi-dimensional utility supported.
Multiple utility functions can be evaluated for contract transactions, and these functions

can be aggregated, as discussed in the previous chapter. Organiser players could also be

implemented that combine the performance measures from a number of contracts in

their composite.

3 Management

3.1. Mechanisms for determining the need for reconfiguration or regulation
are defined.

In ROAD, the mechanisms for monitoring performance are defined in contracts whose

terms assess the utility of transactions with respect to contract requirements. This

performance information is then passed to the organiser, whose player then applies

strategies to determine whether or not regulation or reconfiguration is needed, based on

the composite’s obligations as defined in the role the composite plays in the ‘enclosing’

composite.

3.2. Management as separate entity.
Rather than being encapsulated in a single entity, ROAD management functions are

performed by a separate system consisting of contracts, organiser roles, organiser

players, and the management interface connections between composite organisers.

3.3. Management exogenous versus endogenous.
The ROAD management system can be exogenously imposed on the functional players

without needing access to the internal implementation of those components. Measured

performance in ROAD is always the measurement of a component’s interactions with

respect to the organisation, rather than the measurement of some internal assessment of

performance. Required performance is defined in the terms of the contract(s) that

Chapter 11 Analysis and Discussion 199

obligate a role that is played by a player. However, while ROAD does not define how

domain-specific players are implemented, some players may need to be sensitive to

changes in their role’s obligations.

3.4. Management distributed versus centralised.
ROAD management is distributed to the composite level with each composite having

its own organiser. Organisers are only concerned with relations in their own

composite, and are not aware of how other composites (e.g. sub-composites) are

managed.

3.5. Management structure not subject to a single point of failure.
ROAD applications can be subject to a single point of failure to the extent that

composites are constructed hierarchically. For example, if a composite player fails then

all the sub-composites and players composed by the failed composite will be

inaccessible to the enclosing composite. ROAD does not have (indeed very few other

software architectures have) a distributed architectural description as found in

(Georgiadis, 2002). However, ROAD composites could be built to cater for redundancy

(for example having multiple players available to play the same role), and the

management and reconfiguration capabilities of ROAD provide a natural way to

implement reliable systems.

3.6. Separate management structure.
ROAD has a management structure in the form of a network of organisers. NFRs and

performance data are both encapsulated in utility objects that flow over this network.

3.7. Management can find and/or select components (resolves indirection of
instantiation).

In ROAD, organiser players are responsible for finding suitable candidate components,

and selecting the best candidate. The specification of these domain-specific players is

outside the scope of the ROAD framework.

3.8. Management mechanisms can be superimposed a posterior on functional
components.

ROAD organisational structures can be superimposed on components that have not

been designed to participate in such a structure. This presupposes that the requirements

of roles in the structure are compatible with the pre-existing players, or that suitable

adaptors are implemented to make the role compatible with the player.

3.9. Management updatable.
In ROAD, the management decision making process is the responsibility of organiser

players. The ROAD framework does not define domain-specific organiser players or

200 PART III ROAD Framework and Discussion

management strategies (sequences of reconfiguration operations in response to

performance data and NFRs). In its current implementation, ROAD does not define any

formalisms for representing strategies or methods for accessing such strategies within

an organiser player. Improvement of strategies by learning could also be a possible

attribute of organiser players. While such capability can be accommodated in the

ROAD schema, it is outside the scope of the ROAD framework.

3.10. Management substitutable.
 An organiser player can always be substituted with a more capable player, as the

reflective representation of the composite and mechanisms for manipulating the

structure are defined in the organiser role.

3.11. Supervisory control possible.
Supervisory control is a special case of organiser player substitution, as defined in the

previous point. In this way management control can be overridden by external control

(e.g. a human controller) if the circumstances warrant this (e.g. the automated organiser

cannot find a configuration that meets the obligations of the composite).

3.12. Costs of reconfiguration estimated.
No in-built mechanisms for estimating or measuring the cost of reconfiguration are

currently implemented in ROAD.

4 Other

4.1. Implementation apparent.
A proof-of-concept prototype of the ROAD framework has been implemented. Further

work to be done on the framework is discussed in the final chapter.

 Table 3.1 from Chapter 3 is reproduced below. This table compares adaptive

architecture according to the above criteria and summarises the extent to which the

ROAD framework meets the criteria.

Chapter 11 Analysis and Discussion 201

Table 11-1: Summary of the characteristics of adaptive software frameworks

G
eo

rg
ia

di
s

Pl
as

tik

R
ai

nb
ow

 &
 S

M
s

(G
ar

la
n,

C
he

ng
)

R
ai

nb
ow

(H

ua
ng

)

A
ur

a

V
ia

bl
e

Sy
st

em

A
rc

hi
te

ct
ur

e

C
on

Fr
ac

t

C
A

SA

R
O

A
D

1. Configuration
1.1. Reconfiguration possible at runtime. x ~ x ~
1.2. Declarative composition at runtime. x x x x x ~ ~
1.3. Functionally recursive structure x x ~ ~ ~ x
1.4. Non-functional restructuring supported ~ x ~ ~ ~ x
1.5. Elements can be substituted ~
1.6. Supports heterogeneous components x ~ x x
1.7. Blind communication x x x x x x x x
1.8. Partial instantiation possible x x x x x
1.9. Formal composition ~ ~ ~ x x x

2. Regulation
2.1. Non-functional regulation possible. x ~
2.2. Control dynamics supported. x x x x ~ x x ~
2.3. Utility can be defined arbitrarily x ~ ~ x
2.4. Utility requirements changed dynamically x x x ~ ~ x
2.5. Type of utility changed dynamically. x ~ x ~ ~ ~ ~
2.6. Multi-dimensional utility supported. x ~ ~

3. Management
3.1. Can determine the need for

reconfiguration
x ~ ~ ~ ~

3.2. Management as separate entity. x ~ x
3.3. Management exogenous x ~ x x x
3.4. Management distributed ~ x ~ x
3.5. Management structure not subject to

single point failure
 x x x x x ~ x

3.6. Separate management structure. ~ ~
3.7. Management can find /select entities x ~ ~ ~ ~ ~ ~
3.8. Management mechanisms superimposed ~ x x x x x x x
3.9. Management is updatable. x ~ ~ ~ x x x ~
3.10. Management is substitutable. x ~ ~ ~ x x x
3.11. Supervisory control possible. x x ~ x ~
3.12. Costs of reconfiguration estimable. x x x x ~ x x x

4. Other
4.1. Implementation is apparent. ~

 Of the approaches to adaptive architecture discussed in Chapter 3, the most similar

to ROAD are the Rainbow family (Garlan, Cheng, Huang et al., 2004) and ConFract

(Collet, Rousseau, Coupaye et al., 2005). We will briefly compare these frameworks

with ROAD.

 Rainbow provides a reusable infrastructure with a management layer that models

the application’s architecture. This architecture layer has an adaptation engine and an

adaptation executor that are similar, respectively, to ROAD’s organiser player and

organiser role. This adaptation engine makes decisions (selects strategies) on what

needs to be changed on the basis of changes in the system layer indicated by

monitoring probes. Like ROAD this management is exogenous, but in Rainbow the

instrumentation is assumed to be embedded in the functional components, rather than

202 PART III ROAD Framework and Discussion

being well-defined measurement mechanisms provided for in the infrastructure. In

ROAD monitoring is integral to the organisational infrastructure in the form of contract

terms. Management strategies in Rainbow are globally defined across the structure

(similar to an architectural style). While it is conceivable that Rainbow applications

could be modularised into self-managed composites like ROAD, there is no description

of how such Rainbow modules could be composed, or how they would form an

integrated adaptive system; as is enabled by the recursive composition of ROAD

composites and the management system between composite organisers.

 Like ROAD, ConFract is a contract-based framework that supports recursive

composition. ConFract components have many similarities to ROAD composites. A

ConFract component membrane is similar to the composite’s external role. Both

ConFract components and ROAD composites can be partially instantiated, and both

have controllers. As described in Chapter 3, ConFract has a number of different types

of component-wide contract whereas all contracts in ROAD are between two role

instances. Like ROAD these contracts define both the structure and quality of

interactions but, being component-wide, ConFract contracts, in the form of executable

assertions, can express and enforce more complex behavioural dependencies between

subcomponents. In ROAD these assertions (in the form of contract terms) are

distributed down into the binary contracts by the composite organiser. In ConFract,

specifications (and thus contracts) can be related to the external interface of a

component, or the internal and external parts of a composite. ROAD, on the other

hand, radically separates external function (role) from implementation (player). In

ConFract, replacing an implementation (player) involves generating a new contract(s)

from a new or existing specification. While it is feasible, indeed desirable, in ROAD to

implement the declarative definition of self-managed composites, this is not yet

supported in the current implementation of the ROAD framework. ConFract

emphasises the definition of constraints in contracts at design-time, however details of

its runtime management mechanisms have not, as yet, been published in the English

language journals.

Chapter 11 Analysis and Discussion 203

11.2. Runtime overhead
In this section we examine the ROAD framework prototype in terms of the runtime

overhead it imposes. ROAD defines an organisational middleware structure through

which passes all communication between the application’s functional runtime entities.

This message-intercepting interposed structure creates some overhead.

11.2.1. Factors in overhead
To provide a preliminary characterisation of the overhead imposed by the ROAD

framework, we compare a method invocation through the ROAD framework with a

direct method invocation from one object to another. In general there can be a number

of sources of overhead that arise from the ROAD framework. These extra steps can

include:

1. Passing the invocation via a role

2. Interception method invocation

3. Invoking before and after aspect advice to call any utility functions

4. Calculating utility functions associated with an interaction

5. Marshalling of methods into messages and queuing them in the role

6. Converting messages from Java into external formats e.g. SOAP.

There are also a number of overheads involved with reconfiguration operations, such as

the time it takes to create new contracts, bind players to roles, discover and evaluate

potential players and so on. Such restructuring operations are likely to be ‘out-of-band’

(Coulson, Blair and Grace, 2004); that is, relatively infrequent compared to operational

interactions. Although they may be relatively infrequent, these reconfiguration

overheads will still need to be characterised in a domain-specific application, as the

organiser players will need to know these costs to enable them to perform cost-benefit

analyses of adaptation strategies. However, we will not attempt to characterise the

performance of these reconfiguration operations here because the costs of creating the

internal configuration in the ROAD composite (e.g. adding a role, creating a new

contract, referencing a new player) are likely to be insignificant compared with the

costs of creating the external links to domain specific players (e.g. service discovery,

SLA negotiation, adaptor generation, and so on.). The functions and the strategies to

implement reconfiguration are the responsibility of organiser players and, as such, are

outside the scope of this thesis.

204 PART III ROAD Framework and Discussion

11.2.2. ROAD tests
To quantify the relative significance of different sources of overhead in the ROAD

framework, a number of tests were run. These tests entailed invoking a standard

asynchronous transaction (an invocation of a method and response). In each type of test

this transaction passed through different, and increasingly more complex,

configurations of the ROAD middleware framework. For each configuration the stand-

ard method was invoked in a loop multiple times (100 to 100,000 iterations depending

on the speed of processing the invocation) and the total time to process all iterations

was measured. This total time was divided by the number of iterations in order to

calculate the duration of a single transaction. This process was repeated multiple times

to obtain a mean measurement for the invocation over each of the middleware

configurations. The standard method invoked was kept very small (a simple arithmetic

calculation performed 100 times), so that any change in overhead imposed by the

middleware would be relatively large, and thus could be detected. All tests were

performed on the same machine1, and Web service invocations were executed on a

server2 running as a local host to remove any routing or network variability.

 All tests invoked the same method but the test cases progressively added ROAD

features as listed in the previous subsection. The test configurations are listed below

with an identifying name and a short description.

1. 01_Object-to-Object. This is a benchmark test consisting of a standard

invocation of a method from one object to another, and its asynchronous

response.

2. 02_RolePlayer-RolePlayer. In ROAD, all invocations pass through roles,

which involves an extra method call.

3. 03_Contract. In this test all method invocations between roles pass through a

contract which intercepts the message and checks that it is authorised under the

terms of the contract (using pointcut matching defined in the aspect).

4. 04_ContractWithAdvice. In this test a simple time-based utility function is

invoked in the before and after advice of each transaction to measure how long

the transaction takes. Updating the utility function involves the overhead of

reflectively accessing the joinpoint’s execution context, and passing details of

the method signature and the invoking object to the utility function object that

is attached to the contract term.

1 Pentium 4, 3.0 Ghz, Hyper Threading 512 Mb RAM running Windows XP SP2, Java 2 Runtime
Environment, SE, HotSpot™ Client VM (1.5.0_06-b05)
2 Server running Tomcat v 5.5.16, Apache Axis2, SOAP v1.2, data binding XMLBeans, client code
generated by Axis2 WSDL2Java tool.

Chapter 11 Analysis and Discussion 205

5. 05_MessageQueue. In this test the receiving role encapsulates the request

invocation into a message object, and stores it in a queue. A message processor

in the role passes the message to its role player when it is ready.

6. 06_WS_NoQueue. In this configuration the target method resides on a Web

server. The target role delegates the invocation to a Web service proxy that

uses a Java to SOAP engine to convert and send the message to the Web server.

The Web server then de-marshals the SOAP message. This process then

operates in reverse for the response message.

7. 07_WS_Queue. This is the same as the previous case except that the target role

buffers incoming messages in a queue before passing them to the Web service

proxy player.

11.2.3. Results and discussion
Each run of a test involved the repeated invocation of a transaction (request and

response) over a configuration of ROAD middleware, as shown in Table 11-2 below.

The total time to execute the test run was divided by the number of transactions in

order to calculate the duration of a single transaction. Each run of transactions was

repeated 50 times, and the mean duration of each transaction was calculated. The table

also includes a column that indicates the relative overhead cost of each of the

configurations. These ratios are based on the invocation of a very small process in the

player, and will, of course, decrease as the time taken to execute the process increases

relative to the overhead. Variation between runs of the same test configuration, as

measured by the coefficient of variation (σ/µ*100), was less than 10% in non-Web

service transactions, increasing to less than 20% in Web service transactions.

Table 11-2: Mean time in milliseconds and relative duration to perform a standard
transaction for each middleware configuration

Configuration

Transactions
per test run

Mean Time
(msec) per

transaction

Time
relative

to test 1

Coefficient
of

variation
01_Object-to-Object 100,000 0.00094 1 5.3%
02_RolePlayer-to-RolePlayer 100,000 0.00094 1 6.9%
03_Contract 10,000 0.01316 14 2.0%
04_ContractWithAdvice 10,000 0.06110 65 7.7%
05_MessageQueue 10,000 0.11355 121 9.9%
06_WS No Queue 100 7.70700 6632 17.3%
07_WS Queue 100 8.58455 7017 19.5%

 As can be seen in Table 11-2, passing invocations via roles (Test 2) imposed no

detectable extra overhead relative to the Object-to-Object reference test (Test 1).

Standard ROAD features implemented in Test 3, 4 and 5 (interception contracts,

206 PART III ROAD Framework and Discussion

performance measurement and queuing, respectively) imposed successively greater

overheads, up to approximately 1/10 millisecond per asynchronous transaction.

 Test 3 is representative of the case where contracts are used to ensure that only

authorised transactions occur between roles. These results indicate the relative

efficiency of using association aspects pointcuts to implement method interception (as

opposed to message interception and inspection), an efficiency which is not surprising

given the interception code is woven into the role’s code at compile time. Association-

aspects do impose a small additional overhead viz ordinary AspectJ aspects, as the

association-aspect is a separate object, but Sakurai (Sakurai, Masuhara, Ubayashi et al.,

2006) has shown that this overhead is relatively small.

 Test 4 is representative of the case where contracts are used to measure the

performance time of a contracted interaction. The increase in overhead (~ 5 times the

non-measurement case) is due to the need to access the execution context. This context

is accessed in order to obtain a reference to the contract parties, to obtain a

measurement of the system time, and to update the utility function. If the domain

application requires the calculation of more complex utility functions with each

interception, then an additional overhead would be imposed.

 Use of queuing (Test 5) approximately doubles the overhead relative to Test 4. In

domains where high speed performance is a requirement, consideration might be given

to the judicious use of message queuing. For example, queues might only be used in

those roles that are required to store communication state, or an organiser might only

activate a queue when it is about to swap a player.

 However, as can be seen from Figure 11-1 below, the overhead imposed by the

ROAD middleware as indicated by Tests 3, 4 and 5, is insignificant relative to the cost

imposed by the Web service infrastructure, even when network transmission costs are

removed. In a Web service context, ROAD middleware only accounts for between

0.9% (without queue) and 1.7% (with queue) of the total middleware overhead.

Chapter 11 Analysis and Discussion 207

Figure 11-1: Mean duration per transaction (msec) for different configurations of ROAD

and Web Service middleware

 We can conclude that using ROAD in a Web service context imposes no

significant overhead relative to the Web service middleware. As the maximum absolute

overhead (ignoring the cost of any domain-specific utility functions) was of the order of

a 1/10 of a millisecond per transaction on a standard PC, ROAD could also be

effectively used in situations where the processing time of the players is significantly

greater than this value (e.g. manufacturing control).

11.3. Summary
In terms of the characteristics of adaptive architectures described in Chapter 3, the

properties of an application built using the ROAD framework can be summarised as

follows. The ROAD framework supports the heterogeneous composition of self-

managed composites. ROAD composites support two type of reconfiguration, namely

limited non-functional reconfiguration of the role-structure and functional component

01_Object2Object, 0.00094

02_Role2RolePlayer, 0.00094

03_Contract, 0.01316

04_ContractWithAdvice, 0.06110

05_MessageQueue, 0.11355

06_WS No Queue, 6.23423

07-WS Queue, 6.59683

0 1 2 3 4 5 6 7

Time (msec) per transaction

01_Object2Object, 0.00094

02_Role2RolePlayer, 0.00094

03_Contract, 0.01316

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

208 PART III ROAD Framework and Discussion

(player) substitution. A composite role-structure does not always have to have all of its

roles assigned to players, in order for the composite to be viable. ROAD also supports

regulation of composites through the ability to dynamically set the terms of contracts

that connect roles, and by providing in-built monitoring mechanisms that can check if

the actual performance of role-players meets the requirements defined in their

contracts. The utility functions used to monitor performance can be dynamically

changed at runtime. The management in ROAD is exogenous in that management

structures can be superimposed onto pre-existing components, and no access is required

to the internals of those components. ROAD composites can be recursively composed

with each composite in the composition at a different level of granularity. The self-

managed nature of ROAD composites can provide a basis for reliable systems that can

handle complexity by limiting the concerns of any one organiser to a role composition

at a single level of abstraction. The overall regulatory behaviour of an application is

achieved by requirements and performance data flowing over a management system

between composite organisers. Organiser players are separable from the roles they play,

allowing players to be substituted or upgraded to more capable players with different

adaptive strategies.

 At runtime, the ROAD middleware does impose a performance penalty because

the interactions between components are intercepted and may be monitored for

performance. Message queuing mechanisms also impose an overhead. Depending on

the configuration, this total overhead is up to approximately 120 times a standard

asynchronous transaction between two Java objects. In absolute terms, this overhead

was approximately 1/10 millisecond per asynchronous transaction on the testbed PC.

However, in the context of Web services technologies which are becoming the industry

standard for service composition, the overhead of the ROAD middleware framework is

relatively insignificant, being less than 2 percent of the total overhead incurred by Web

service middleware.

12

Conclusion

This chapter concludes the thesis by discussing its contribution to research into

adaptive software systems. We then discuss the future work that could to be done to

further develop the ROAD approach to developing ontogenically adaptive software.

12.1. Contribution
The major contribution of this thesis is to show how adaptive software systems can be

devised that can respond to both changes in requirements and to changes in the

environments in which these systems operate. A novel framework has been developed

to facilitate the creation of adaptive and adaptable applications that are scalable,

distributed, grounded, recursively structured and self-managed. A summary of the key

characteristics of this ROAD framework, and how it compares with other adaptive

architectures, can be found in section 11.1 of the previous chapter. We have

demonstrated how an application built on this framework can adaptively restructure

itself in response to changing conditions.

 As well as developing the ROAD framework, a number of additional contributions

have been made to software engineering both at conceptual and technical levels. These

are listed below.

 This thesis shows how the biologically-based concepts of ontogenic adaptation and

organisation can be applied to software. The concept of adaptation is often used in a

confused or muddy way in software engineering. Different types of adaptation need to

be clearly distinguished. This thesis draws on the work on biological cognition by

Maturana and Varela (1980) to distinguish ontogenic adaptation from other types of

adaptation (evolutionary adaptation and environmental manipulation), and shows how

210 PART III ROAD Framework and Discussion

the concept of ontogenic adaptation can be applied to goal-directed software systems.

Key to this definition of ontogenic adaptation is the concept of autopoiesis, i.e. the

maintenance of organisational relationships within a viable system. This thesis

proposes that software systems should be viewed as organisations that have as a

primary goal the maintenance of such homeostatic relationships both within the system,

and between the system and its environment. We introduce an analytical framework for

evaluating to what extent adaptive software architectures conform with the principles of

ontogenic adaptation.

 The conception of organisation in this thesis is based on three principles. The first

two principles derive from systems theory: the first being the separation of control from

process, and the second the being the recursive distribution of control down through the

organisational structure (or viewed from the bottom up, the creation of successively

higher levels of control). This thesis proposes a third principle: the strict separation of a

role from the player that executes that role. Software organisations are viewed as

dynamic loosely-coupled role structures analogous to a human organisation. While

other approaches (e.g. (Herring, 2002; Cai, Cangussu, DeCarlo et al., 2004)) have

proposed a cybernetic view of software as a control system, to the best of our

knowledge the role-based organisational view propounded here is unique.

 This thesis clarifies the concept of software roles by distinguishing between (i)

roles as descriptors for association-ends, (ii) player-centric roles that add functionality

to a stable entity, and (iii) organisation-centric roles that represent stable abstract

functions (goal-oriented positions) within an organisational structure. These are distinct

concepts that are often blurred or confused in the literature on software roles. While the

concept of an organisation-centric role is not unique to this thesis, in that it appears in

some object-oriented and agent-oriented literature (e.g. (Baldoni, Boella and van der

Torre, 2005b; Odell, Nodine and Levy, 2005; Zambonelli, Jennings and Wooldridge,

2000)), the conception of functional roles in this thesis is distinct from other

approaches. ROAD role instances are middleware runtime entities that define an

abstract function, perform messaging and queuing functions, but do not, in themselves,

execute any domain function. While other role-based views of software organisations

have been developed (e.g. (Baldoni, Boella and van der Torre, 2005a; Herrmann,

2005)) these approaches are not per se adaptive.

 Complex human organisations typically define roles that allow the players varying

degrees of autonomy and thus require varying capability from their players. Likewise,

players in different roles within a software organisation may be heterogeneous (objects,

components, services, agents or humans), and have very different degrees of autonomy

Chapter 12 Conclusion 211

and capability. Indeed, we argue that this differentiated autonomy is a necessary

attribute of complex, goal-directed organisations (Colman and Han, 2005). This thesis

proposes a novel conceptual scheme for defining the relationship between roles and

players, based on five levels of autonomy that roles can allow their players. We show

how these levels effect the implementation of roles and players. As software systems

become more complex and open, composite structures will need to facilitate such

heterogeneity.

 Roles in ROAD are associated by contracts. This thesis introduces a novel

conception of software contracts. The concept of a contract has often been used in

software engineering, predominately as means to enforce conditions at the interface of

a component (e.g. (Meyer, 1988)). As discussed in Chapter 3, contracts have also been

used as a means of composition in adaptive architectures (e.g. (Collet, Rousseau,

Coupaye et al., 2005)). A service level agreement that sets out QoS requirements can

also be thought as a type of inter-organisational contract, such as can be specified in

WSLA (IBM Corporation, 2003). ROAD contracts are instances of binary associations

between role instances that combine aspects of all of the above conceptions; namely,

interaction control, composition, and performance. ROAD contracts exist as a type, as

an individualised specification, and as an implementation entity that monitors and can

enforce aspects of the specification. This thesis also introduces the concept of contract

abstraction. Abstract performative contracts allow common interaction patterns to be

defined and reused. The performative contracts provided by the ROAD framework can

also be extended by the application programmer to create domain-specific contracts

that can then be instantiated with concrete contracts.

 At the technological level, this thesis shows how association aspects (Sakurai,

Masuhara, Ubayashi et al., 2006), can be used to implement ROAD contracts. While

aspects have previously been suggested as a means of implementing interface-

enforcement contracts (e.g. (Kendall, 1999)), in order to implement ROAD contracts

we need to be able to create aspect instances that associate groups of (role) objects.

Association-aspects provide this facility, and, as such, this thesis provides a novel use

of association aspects.

 This thesis also proposes a novel management system constituted of connected

organisers. Non-functional requirements and performance data flow over this network

of organisers. A ROAD management system is analogous to a business-management

system in that it is separate from the functional system (i.e. the processes executed by

the functional role-players), yet this management system can control individual

relationships in the functional system (i.e. by controlling the contracts between roles).

212 PART III ROAD Framework and Discussion

The connecting points between the management system and functional system

(process) are the contracts that the organisers control. While many adaptive software

architectures (as described in Chapter 3) propose a separate management layer, such

layers are typically implemented through the global application of policies that are

targeted at the components rather than the connections. In ROAD, management is

distributed down to the organisers of composites, and these organisers create and

regulate the contracts. The type of management system used in ROAD enables the

creation of recursive and distributed organisations that scale well and decompose

complexity into manageable modules connected by a structure (Simon, 1969).

 This thesis also shows how monitoring can be done via the contracted role

relationships. This facilitates the creation of management systems that are exogenous to

the functional components, and can be imposed on these components a posterior.

Monitoring via relationships gives ROAD the added advantage of monitoring

mechanisms provided by the framework, rather than relying on monitoring mechanisms

being built into the components as in other adaptive architectures (e.g. (Garlan, Cheng,

Huang et al., 2004)).

 Finally, in the context of service-oriented computing, this thesis introduces the

concept of an adaptive application-specific middleware. Such middleware acts as an

interoperability bridge that can model and implement long-term inter-organisational

relationships between heterogeneous services. When used with Web service

technologies, we have shown that the overhead imposed by this ROAD-based adaptive

middleware is insignificant, relative to the overheads imposed by Web service

middleware.

12.2. Future work
The ROAD meta-model presents a broad vision of what it means for a software

application to be ontogenically adaptive. The ROAD framework, as it is currently

implemented, supports the key concepts of the ROAD meta-model. However, there

remains much work to be done to enhance the framework and to develop tool support,

before such an approach can become a widely accepted engineering reality. Throughout

the body of this thesis, we have pointed to areas of further research and development

that could be pursued. In particular, Section 8.6 discussed a number of aspects of the

ROAD framework that need to be further developed in order to fully realise ontogenic

adaptation in software applications. To summarise, this work includes:

• Mechanisms for the aggregation of NFRs found in contracts into role “position

descriptions”.

Chapter 12 Conclusion 213

• Support for protocol and general clauses in ROAD contracts including the

development mechanisms for the tracking protocols consisting of a number of

transactions. Because ROAD contracts are binary, ways of coordinating

interactions involving more than two parties need to be defined at the composite-

organiser level.

• Development of additional organisational ‘architectural styles’ that can be

expressed in terms of arrangements of abstract performative contracts. In our

thesis the Widget and Broker organisation examples can be viewed, respectively,

as command-hierarchy and supply-chain structures. Other types of abstract

organisational structure could also be expressed, for example, pull-driven

organisations that are controlled through resource constraints.

• Integration with other middleware technologies and standards, in particular the

development of role-player adaptors that can act as inter-operability bridges with

technologies such as CORBA or agent communication languages.

• Further development of the association-aspect mechanisms that underpin ROAD

contracts, to support dynamic deployment of new types of contracts, and the

ability to denote pointcuts on method annotations so that that role method names

do not have to be mangled in order to associate them with CCA abstract message

types.

• Development of a generic language for the communication of NFRs and

performance measures between organisers (only the form of the messages as

utility objects has thus far been defined).

• Mechanisms to insure player transition can occur safely and without loss of

domain state.

• Support for the declarative definition of organisational structures, and the

deployment of declaratively defined organisations.

In ROAD, the decisions about when and how to regulate or reconfigure a composite are

the responsibility of the composite’s organiser player. The definition of these domain-

specific players is outside the scope of the ROAD framework and this thesis. That

being said, an organiser’s capability is core to the adaptive capability of the composite.

It is therefore appropriate to mention the major research challenges that need to be

addressed in developing such players. These challenges include:

• Defining (a library of) strategies for composite adaptation (like that illustrated in

Figure 7-4). These strategies would include control-theoretic strategies based on

characterisations of the cost of reconfiguration operations.

214 PART III ROAD Framework and Discussion

• Defining formalisms and strategies for the valid and automatic decomposition of

composite level NFRs into contracts terms between roles in that composite.

• Implementing capabilities in the organiser that will allow composites to act as

players in open agent or service-oriented contexts. Depending on the application

domain, these capabilities might include player (agent or service) discovery. This

would require organiser players be able to use standardised player discovery

mechanisms (e.g. UDDI). Organisers may also need to perform service-level

(QoS) and protocol negotiation, which would necessitate that internal ROAD

contract representations be mapped to external standards for defining service-

level agreements (e.g. WS-Agreement) and collaboration (e.g. WS-

Coordination). In open or inter-organisational contexts security issues may also

need to be addressed.

• The current implementation of ROAD, compositions are limited to predefined

contract types. These compositions do not define new functions. If interfaces

could be completely described at syntactical, behavioural, QoS and semantic

levels, then sufficiently intelligent organisers may be able to perform automated

functional composition.

• Advanced organisers need to be able to model the cost of reconfiguration to

determine if the benefits of the new configuration outweigh the costs of

achieving that new structure. For an organiser to do this, it needs to maintain

dynamic models of the organisation. These dynamic models would be a

prerequisite for developing advanced control-theoretic software.

As pointed out in Chapter 8 (Section 8.7), tools need to be developed to facilitate the

development of ROAD organisational structures and to check the consistency of those

structures. This will require the development of a reflective meta-model of ROAD

programming constructs (roles, contracts, composites etc.) that will allow reasoning

about the organisational structures that are defined using those constructs. Development

methodologies appropriate to ROAD also need to be elaborated. It would be beneficial

to integrate ROAD with existing SDLC (Software Development Life-Cycle)

methodologies that provide role-oriented analysis techniques (e.g. (Reenskaug, 1996;

Juan, Pearce and Sterling, 2002; Wooldridge and Jennings, 2000)).

 Finally, the applicability of ROAD to various application domains needs to be

further explored. In this thesis we have described the use of ROAD to model two types

of application domain: a manufacturing control system, and a service-oriented supply

chain. Other types of domain could prove amenable to ROAD. These include domains

Chapter 12 Conclusion 215

such as pervasive computing and mixed-initiative control-systems that are characterised

by volatile requirements, components and environments.

 We began this thesis by showing how principles of systems-theory can be applied

to the design of adaptive software architectures. Being based on these principles, the

ROAD framework provides a way of creating organisational structures and provides

mechanisms for regulating interactions over those structures. These regulated

organisational structures provide a higher level of abstraction at which software can be

conceptualised, and open possibilities for new research directions. Such organisational

abstractions of software systems might provide the basis for the development of a

theory of software organisation, just as a large body of management theory has been

developed focussed on human organisations. With such a management theory we may

begin to move beyond the basic principles of software design, such as low coupling and

high cohesion, and beyond simple architectural patterns and styles, towards a more

complete understanding of what makes a good software organisation: one that is both

goal-directed and viable in open and dynamic environments.

217

Appendix

Test Harness Code and Output

 INPUT OUTPUT

1 package widgetOrg;

2

3 import mContract.Composite;

4 import mContract.Organiser;

5 import widgets.Foreman;

6 import widgets.LazyEmployee;

7 import widgets.Manager;

8 import widgets.NonFnRole;

9 import widgets.ProductionManager;

10 import widgets.SkillfulEmployee;

11 import widgets.ThingyMaker;

12 import widgets.WidgetMaker;

13

14 /**

15 * A test program to test the functionality of a composite, and the abilities

16 * to swap players and to create new role at run time of organiser.

17 *

18 * @author Alan Colman

19 * @author Linh Duy Pham

20 */

21 public class TestComposite

22 {

23 public static void main(String[] args)

24 {

25 ProductionManager pm = new ProductionManager("Production Manager");

26 WidgetMaker wm = new WidgetMaker("Widget Maker");

27

28 //player for ProductionManager

29 Manager manager = new Manager("Manager");

30

31 // Organiser setup

32 WidgetDepOrganiserPlayer orgPlayer = new WidgetDepOrganiserPlayer();

33 Organiser org = new WidgetDepOrganiser(new WidgetDepRoleFactory());

 INPUT OUTPUT

Test Harness Code and Output 219

34 org.setPlayer(orgPlayer);

35

36 // Player for WidgetMaker --> create the WidgetDepComposite

37 Composite widgetDepComposite = new WidgetDepComposite();

38 org.setComposite(widgetDepComposite);

39

40 //create ThingyMaker and Foreman

41 ThingyMaker t = new ThingyMaker("Thingy Maker");

42 Foreman f = new Foreman("Foreman");

43

44 //create other players

45 SkillfulEmployee foremanPlayer = new SkillfulEmployee("Foreman/Thingy

Player");

46 SkillfulEmployee goodThingyMakerPlayer = new SkillfulEmployee("Skillful

ThingyMaker");

47 LazyEmployee badThingyMakerPlayer = new LazyEmployee("Lazy Thingy

Maker");

48

49 System.out.println("\nThere are three ThingyMaker players created.");

50 System.out.println("Foreman/Thingy Player: performance 20 ms");

51 System.out.println("Skillful Thingy Maker: performance 20 ms");

52 System.out.println("Lazy Thingy Maker: performance at start is 10 ms, increase

by 20 ms every time a thingy is made, with cap of 100

ms");

53

54 // add Roles and Players to composite

55 widgetDepComposite.addRole(f);

56 widgetDepComposite.addRole(t);

57

58 widgetDepComposite.addPlayer(foremanPlayer);

59 widgetDepComposite.addPlayer(goodThingyMakerPlayer);

60 widgetDepComposite.addPlayer(badThingyMakerPlayer);

1 There are three ThingyMaker players created.

2 Foreman/Thingy Player: performance 20 ms

3 Skillful Thingy Maker: performance 20 ms

4 Lazy Thingy Maker: performance at start is 10 ms, increase by 20 ms every time a thingy is

made, with cap of 100 ms

5

 INPUT OUTPUT

61 // Setup Initial Players

62 try

63 {

64 //ProductionManager

65 pm.setPlayer(manager);

66 //WidgetMaker

67 wm.setPlayer(widgetDepComposite);

68

69 //Foreman and ThingyMaker

70 f.setPlayer(foremanPlayer);

71

72 System.out.println("\nStart up program with 1 ThingyMaker role, Lazy

Thingy Maker is the initial player.");

73 t.setPlayer(badThingyMakerPlayer);

74 }

75 catch (Exception e)

76 {

77 System.out.println(e.getMessage());

78 }

79

81

82 System.out.println("\n\n--");

83 System.out.println("---- Before contract between Production Manager and

WidgetMaker is created ----");

84 System.out.println("TEST: Should have error non contracted between

ProductionManager and WidgetMaker");

85

86 try

87 {

88 pm.do_placeOrderWidgets();

89 }

90 catch (Exception e)

91 {

92 System.out.println(e.getMessage());

6 Start up program with 1 ThingyMaker role, Lazy Thingy Maker is the initial player.

7

8

9 ---

10 ---- Before contract between Production Manager and WidgetMaker is created ----

11 TEST: Should have error non contracted between ProductionManager and WidgetMaker

12 To user: Enter number of widgets required: 15

13 X--X CCA call from uncontracted functional role: call(void

widgets.WidgetMaker.do_makeWidget(int))

14

 INPUT OUTPUT

Test Harness Code and Output 221

93 e.printStackTrace();

94 }

95

96 System.out.println("\n\n---");

97 System.out.println("---- Creating contract between ProductionManager and

WidgetMaker ----");

98 // create contract

99 ProManagerWidgetMakerContract contract = new

ProManagerWidgetMakerContract(pm, wm);

100

101 System.out.println("\n\n---");

102 System.out.println("---- Before contract between Foreman and ThingyMaker is

created ----");

103 System.out.println("TEST: Should have error non contracted between Foreman

and ThingyMaker");

104

105 try

106 {

107 pm.do_placeOrderWidgets();

108 }

109 catch (Exception e)

110 {

111 System.out.println(e.getMessage());

112 e.printStackTrace();

113 }

114

115 System.out.println("\n\n---");

116 System.out.println("---- Create contract between Foreman and ThingyMaker ----

");

117 org.createContract(f, t);

118

119 System.out.println("\n\n---");

120 System.out.println("---- Now place an order of widget ----");

121 System.out.println("TEST: Should produce widgets");

15

16 ---

17 ---- Creating contract between ProductionManager and WidgetMaker ----

18 do_makeWidget term added to contract

19 qry_widgetOrder term added to contract

20

21

22 ---

23 ---- Before contract between Foreman and ThingyMaker is created ----

24 TEST: Should have error non contracted between Foreman and ThingyMaker

25 To user: Enter number of widgets required: 15

26 ---> before a1 do AtoB : call(void widgets.WidgetMaker.do_makeWidget(int)) – Calculate

Start time.

27 ---> after a0 error: call(void widgets.WidgetMaker.do_makeWidget(int))

28 X--X CCA call from uncontracted functional role: call(void

widgets.ThingyMaker.do_makeThingy())

29

30

31 ---

32 ---- Create contract between Foreman and ThingyMaker ----

33 Utility: FTUtility: thingiesPerSec0

34 do_makeThingy term added to contract

35 inf_thingyMade term added to contract

38 ---

39 ---- Now place an order of widget ----

40 TEST: Should produce widgets

 INPUT OUTPUT

122

123 try

124 {

125 pm.do_placeOrderWidgets();

126 }

127 catch (Exception e)

128 {

129 System.out.println(e.getMessage());

130 e.printStackTrace();

131 }

132 }

133

134 }

============= END OF INPUT ==

The rest of the output demonstrates the adaptive behaviour of the
composite as the performance of the players change.

41 To user: Enter number of widgets required: 15

42 ---> before a1 do AtoB : call(void widgets.WidgetMaker.do_makeWidget(int)) – Calculate

Start time.

43

44 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

45 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

46 signature: do_makeThingy

47 Message added.

48

49 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

50 Thingy made by Lazy Employee named Lazy Thingy Maker, in 10 ms

51

52 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

53 afterUpdate Last elapsedtime 15 msec

54 Moving average is 15.0 msec

55 calculateUtility

56 To user: Thingies are made. Quantity = 1

57 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

58 signature: inf_thingyMade

59 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

60 signature: do_makeThingy

61 Message added.

62

63 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) - CalculateStart

time.

64 Thingy made by Lazy Employee named Lazy Thingy Maker, in 30 ms

65

66 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

 OUTPUT OUTPUT

Test Harness Code and Output 223

67 afterUpdate Last elapsedtime 32 msec

68 Moving average is 23.5 msec

69 calculateUtility

70 To user: Thingies are made. Quantity = 1

71 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

72 signature: inf_thingyMade

73 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

74 signature: do_makeThingy

75 Message added.

76

77 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

78 Thingy made by Lazy Employee named Lazy Thingy Maker, in 50 ms

79

80 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

81 afterUpdate Last elapsedtime 94 msec

82 Moving average is 47.0 msec

83 calculateUtility

84 widgets.ThingyMaker:Thingy Maker: do_makeThingy is in breach

85 IN BREACH

86

87 *** In Breach Action

88

89 *** Replaced by a better player

90 To user: Thingies are made. Quantity = 1

91 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

92 signature: inf_thingyMade

93 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

94 signature: do_makeThingy

95 Message added.

96

97 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

98 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

99

100 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

101 afterUpdate Last elapsedtime 93 msec

102 Moving average is 93.0 msec

103 calculateUtility

104 widgets.ThingyMaker:Thingy Maker: do_makeThingy is in breach

105 IN BREACH

106

107 *** In Breach Action

108 Utility: FTUtility: thingiesPerSec0

109 do_makeThingy term added to contract

110 inf_thingyMade term added to contract

111

112 NOTE: New contract is created between object of class widgets.Foreman and object of class

widgets.ThingyMaker

113 To user: Thingies are made. Quantity = 1

114 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

115 signature: inf_thingyMade

116 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

117 signature: do_makeThingy

118 Message added.

119

120 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

121 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

 OUTPUT OUTPUT

122

123 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

124 afterUpdate Last elapsedtime 63 msec

125 Moving average is 78.0 msec

126 calculateUtility

127 widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming

128 UNDER-PERFORMANCE

129 To user: Thingies are made. Quantity = 1

130 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

131 signature: inf_thingyMade

132 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

133 signature: do_makeThingy

134 Message added.

135

136 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

137 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

138 signature: do_makeThingy

139 Message added.

140

141 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

142 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

143

144 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

145 afterUpdate Last elapsedtime 63 msec

146 Moving average is 73.0 msec

147 calculateUtility

148 widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming

149 UNDER-PERFORMANCE

150 To user: Thingies are made. Quantity = 1

151 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

152 signature: inf_thingyMade

153 Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms

154

155 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

156 afterUpdate Last elapsedtime 31 msec

157 Moving average is 31.0 msec

158 calculateUtility

159 To user: Thingies are made. Quantity = 1

160 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

161 signature: inf_thingyMade

162 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

163 signature: do_makeThingy

164 Message added.

165

166 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

167 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

168 signature: do_makeThingy

169 Message added.

170

171 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

172 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

173

174 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

175 afterUpdate Last elapsedtime 62 msec

176 Moving average is 70.25 msec

177 calculateUtility

 OUTPUT OUTPUT

Test Harness Code and Output 225

178 widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming

179 UNDER-PERFORMANCE

180 To user: Thingies are made. Quantity = 1

181 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

182 signature: inf_thingyMade

183 Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms

184

185 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

186 afterUpdate Last elapsedtime 31 msec

187 Moving average is 31.0 msec

188 calculateUtility

189 To user: Thingies are made. Quantity = 1

190 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

191 signature: inf_thingyMade

192 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

193 signature: do_makeThingy

194 Message added.

195

196 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

197 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

198 signature: do_makeThingy

199 Message added.

200

201 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

202 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

203

204 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

205 afterUpdate Last elapsedtime 62 msec

206 Moving average is 68.6 msec

207 calculateUtility

208 widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming

209 UNDER-PERFORMANCE

210 To user: Thingies are made. Quantity = 1

211 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

212 signature: inf_thingyMade

213 Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms

214

215 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

216 afterUpdate Last elapsedtime 31 msec

217 Moving average is 31.0 msec

218 calculateUtility

219 To user: Thingies are made. Quantity = 1

220 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

221 signature: inf_thingyMade

222 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

223 signature: do_makeThingy

224 Message added.

225

226 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

227 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

228 signature: do_makeThingy

229 Message added.

230

231 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

232 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

233

 OUTPUT OUTPUT

234 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

235 afterUpdate Last elapsedtime 63 msec

236 Moving average is 67.66666666666667 msec

237 calculateUtility

238 widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming

239 UNDER-PERFORMANCE

240 To user: Thingies are made. Quantity = 1

241 Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms

242

243 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

244 afterUpdate Last elapsedtime 32 msec

245 Moving average is 31.25 msec

246 calculateUtility

247 To user: Thingies are made. Quantity = 1

248 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

249 signature: inf_thingyMade

250 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

251 signature: inf_thingyMade

252 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

253 signature: do_makeThingy

254 Message added.

255

256 ---> before a1 do AtoB : call(void widgets.ThingyMaker.do_makeThingy()) – Calculate Start

time.

257 ---> after a0 : call(void widgets.ThingyMaker.do_makeThingy())

258 signature: do_makeThingy

259 Message added.

260 ---> after a0 : call(void widgets.WidgetMaker.do_makeWidget(int))

261 signature: do_makeWidget

262 Thingy maded by Skillful Employee named Skillful Thingy Maker, in 20 ms

263

264 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

265 afterUpdate Last elapsedtime 31 msec

266 Moving average is 31.2 msec

267 calculateUtility

268 To user: Thingies are made. Quantity = 1

269 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

270 signature: inf_thingyMade

271 Thingy maded by Skillful Employee named Foreman/Thingy Player, in 20 ms

272

273 <--- before b1 : call(void widgets.Foreman.inf_thingyMade())

274 afterUpdate Last elapsedtime 63 msec

275 Moving average is 67.0 msec

276 calculateUtility

277 widgets.ThingyMaker:Thingy Maker: do_makeThingy is underperforming

278 UNDER-PERFORMANCE

279 To user: Thingies are made. Quantity = 1

280 <--- after b0 : call(void widgets.Foreman.inf_thingyMade())

281 signature: inf_thingyMade

Author Index

Agha, G. A. ...40
Agre, P. E. ...19
Aldrich, J. ..47
Allen, R. J.................................... 33, 34, 36
Alonso, G. ...190
Andrade, L...41
Apache Web Services Project171
Arbab, F... 38, 41
Ashby, W. R........................ 17, 18, 20, 127
Baclawski, K. ..40
Bae, D. H...77
Baldoni, M....... 78, 79, 84, 88, 97, 122, 210
Baresi, L. ...42
Barrio-Solárzano, M................................41
Barros, A. ..109
Batista, T. 39, 46, 47
Bäumer, D. ..77
BEA Systems 42, 117
Beer, S. 11, 14, 19, 20, 22, 56, 131
Beugnard, A. 100, 101, 103
Blair, G. S.. 46, 203
Boella, G. 78, 84, 88, 97, 122, 210
Bracciali, A. ..102
Bradbury, J. S. 32, 33, 34, 39
Brogi, A...102
Brueckner, S. 16, 17, 78
Bruneton, E. ..58
Cai, K. ... 23, 210
Cai, Y. ...147
Canal, C...102
Cangussu, J. W.......................... 23, 41, 210
Casati, F...190
Chambers, C..47
Chang, H. ..58
Cheng, S.-W. ..49
Cheng, S.-W. ... 34, 48, 50, 51, 62, 201, 212
Chess, D. M...42
Collet, P............... 57, 58, 59, 100, 201, 211
Colman, A. 14, 24, 43, 78, 93, 105, 108,

128, 141, 143, 163, 189, 211, 218
Cooper, K. ...41
Corbi, T. A. ...42
Cordy, J. R... 34, 39
Coulson, G........................... 39, 46, 47, 203
Coupaye, T. 57, 58, 59, 100, 201, 211
Cuesta, C. E...41
Dan, A. ..42
de la Fuente, P. ..41
de Lemos, R. ...41
de Miguel, M.A.35
DeCarlo, R. A.................................. 23, 210
Dennett, D. C...91
Dignum, V...43
Dingel, J. ... 34, 39
Diotalevi, F..100
Douence, R.. 33, 34

Duce, D. A...55
Dumas, M..109
Eclipse Foundation................................146
Emmerich, W. 3, 43, 109, 191
Eracar, Y.A..40
Ferber, J...78
Fiadeiro, J. L. ..41
FIPA .. 157, 196
FIPA .. 93, 108
Floch, J. ...40
Fogel, D. B. ...27
Fowler, M..77
Gamma, E..100
Ganek, A. G...42
Gangopadhyay, D..................................100
Garlan, D.29, 33, 34, 36, 48, 49, 50, 51, 54,

55, 61, 62, 201, 212
Georgeff, M...91
Ghezzi, C...42
Glinz, M. 40, 61, 62, 100
Global Grid Forum.................. 42, 117, 190
Goodstein, L. P..90
Gorlick, M. M. 37, 40, 94
Gouveia, J..41
Grace, P. .. 46, 203
Gu, L. ..147
Gutknecht, O. ..78
Hallsteinsen, S...40
Han, J.14, 24, 39, 42, 78, 93, 105, 108, 128,

141, 143, 157, 163, 189, 211
Hannemann, J.100
Heimbigner, D...41
Helm, R. ..100
Herring, C. E. 22, 23, 27, 56, 57, 210
Herrmann, S. 78, 79, 84, 88, 210
Heylighen, F. ...19
Hillman, J. ...41, 97
Holland, I................................... 13, 27, 100
Horvitz, E. 55, 71, 90
Huang, A.-C. 34, 48, 49, 50, 51, 52, 53, 62,

201, 212
IBM xi, 42, 117, 211
Irwin, J...146
Jackson, D. ..44
Jennings, N. R. 15, 43, 214
Jennings, N. R.78
Jennings, N.R ..108
Jézéquel, J. ..103
Johnson, G...100
Joolia, A. 39, 46, 47
Joslyn, C..19
Juan, T. .. 78, 214
Kaplan, S. ..56
Keeney, R. L. ..188
Kendall, E. A..................... 77, 79, 147, 211
Kephart, J. O.42, 53

228

Khan, K. ..39
Kiczales, G.100, 146
Knight, J. C..41
Kokar, M. M..40
Kramer, J.29, 33, 34, 43, 44, 46
Kristensen, B. B...............77, 78, 79, 81, 82
Kuno, H. ..190
Lamanna, D. D.43
Lamersdorf , W..42
Lamping, J. ..146
Lee, J. S. ..77
Levy, R.79, 80, 82, 210
Li, C...41
Li, Z. ..42
Lieberherr, K. J..................................27, 94
Ludwig, H..42
Machiraju, V..190
Magee, J.....................29, 33, 34, 43, 44, 45
Masuhara, H. 138, 147, 155, 206, 211
Maturana, H. R. .13, 14, 15, 17, 20, 23, 209
McKean, A. ...77
McKinley, P. K..................................27, 40
Medvidovic, N...................................39, 40
Meyer, B....................57, 60, 100, 116, 211
Microsoft ...42, 117
Mintzberg, H.16, 25, 93
Monroe, R..46
Mukhija, A...........................40, 61, 62, 100
Nagel, E. ..23
Nodine, M............................79, 80, 82, 210
Norman, D. ..55
Notkin, D. ..47
OASIS42, 156, 157, 190
Object Management Group77
Odell, J.....................78, 79, 80, 81, 82, 210
Oreizy, P......................................37, 40, 94
Osterbye, K..77, 82
Pagurek, B. ..43
Parnas, D. L. ..97
Parunak, H. V. D.16, 17, 78
Pearce, A. ..78, 214
Pejtersen, A. M.90
Pell, B. ...91
Pham, L. D....... 43, 141, 143, 163, 189, 218
Plasil, F..102, 109
Plouzeau, N. ..103
Poladian, V.48, 55
Pollack, M. ..91
Raiffa, H. ...188
Rajan, H...147
Rasmussen, J. ..90
Razouk, R. R. ..40
Reenskaug, T.77, 214
Riehle, D..77, 106
Robbins, J. E..40

Rousseau, R.57, 58, 59, 100, 201, 211
Sadjadi, S. M. ..27
Sakurai, K.138, 147, 155, 206, 211
Sazawal, V...47
Schmerl, B. ..48
Searle, J. R...91
Shannon, C. E. ...23
Shaw, M.....................18, 28, 29, 30, 34, 48
Shoham, Y. ..45
Siberski, W. ...77
Sichman, J. ..43
Simon, H. A.....................4, 16, 19, 25, 212
Skene, J..43
Skyttner, L. ..12, 18
Sousa, J. P...55, 61
Stav, E ...40
Steenkiste, P48, 52, 53
Stefani, J.B. ...58
Steimann, F..................................76, 77, 79
Sterling, L.78, 214
Strom, R. E.102, 109
Sullivan, J.W. ..55
Sullivan, K...147
Sullivan, K. (also J.W)...........................147
Sykes, J. A. ..15
Taylor, M. M.) ...55
Taylor, R. N...37
Taylor, R. N.................................39, 40, 94
Tennenholtz, M..45
ter Hofstede, A.......................................109
Tesauro, G. ..53
Tosic, V. ..43
Tyler, S.W. ..55
Ubayashi, N.138, 147, 155, 206, 211
van der Torre, L.78, 84, 88, 97, 122, 210
van Lamsweerde, A.56
Varela, F. J......... 13, 14, 15, 17, 20, 23, 209
Visnovsky, S..................................102, 109
Vlissides, J...100
von Bertalanffy, L.18
W3C ..93, 108, 190
Waewsawangwong, P..............................45
Walsh, W. E...53
Warren, I..41, 97
Weaver, W...23
Wermelinger, M.40, 41
Wiener, N. ...17
Wirfs-Brock, R.77
Wolf, A. L. ..41
Wooldridge, M. J. 15, 43, 78, 108, 210, 214
Yellin, Daniel M............................102, 109
Zambonelli, F.15, 43, 78, 108, 210
Zhou, Z. ...40
Zirpins, C...42

References

Agha, G.A. (2002) Adaptive Middleware - Introduction. Communications of the ACM vol 45,
no 6, pp 31-23.

Agre, P.E. (1995) Computational research on interaction and agency - Introduction. In: Agre, P.
and Rosenschein, S.J., (Eds.) Computational theories of interaction and agency, pp 1-
52. MIT Press

Aldrich, J., Chambers, C., and Notkin, D. (2002) ArchJava: connecting software architecture to
implementation. In Proceedings of the 24th International Conference on Software
Engineering ICSE '02 Orlando, Florida, New York, NY: ACM Press.

Aldrich, J., Sazawal, V., Chambers, C., and Notkin, D. (2002) Architecture-centric
programming for adaptive systems. In Proceedings of the First Workshop on Self-
Healing Systems WOSS '02 Charleston, South Carolina, New York, NY: ACM Press.

Allen, R. and Garlan, D. (1997) A formal basis for architectural connection. ACM
Transactions in Software. Engineering Methodol. vol 6, no 3, pp 213-249.

Allen, R.J., Douence, R., and Garlan, D. (1998) Specifying and Analyzing Dynamic Software
Architectures. In Proceedings of the 1998 Conference on Fundamental Approaches to
Software Engineering (FASE '98)

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004) Web services concepts, architectures
and applications, Berlin, London: Springer.

Andrade, L., Fiadeiro, J.L., Gouveia, J. and Koutsoukos, G. (2002) Separating computation,
coordination and configuration. Journal of Software Maintenance and Evolution:
Research and Practice vol 14, no 5, pp 353-369.

Apache Web Services Project (2006) Axis Web Sevices, http://ws.apache.org/axis/, Last
accessed: Jul 2006

Arbab, F. (1998) What Do You Mean, Coordination? Bulletin of the Dutch Association for
Theoretical Computer Science (NVTI) vol March,

Ashby, W.R. (1956) An introduction to cybernetics, London: Chapman & Hall.

Baldoni, M., Boella, G., and van der Torre, L. (2005a) Bridging agent theory and object
orientation: Importing social roles in object oriented languages. In Proceedings of
PROMAS workshop at AAMAS'05

Baldoni, M., Boella, G., and van der Torre, L. (2005b) Roles as a coordination construct:
Introducing powerJava. In In Procs. of MTCoord'05 workshop at COORD'05,

Baldoni, M., Boella, G., and van der Torre, L. (2005c) Introducing Ontologically Founded
Roles in Object Oriented Programming: powerJava. In AAAI Fall Symposium, Roles,
an interdisciplinary perspective Arlington, Virginia, AAAI Press.

Baresi, L., Ghezzi, C., and Guinea, S. (2004) Smart Monitors for Composed Services . In
Proceedings of the 2nd International Conference on Service Oriented Computing
(ICSOC'04) New York, NY, USA , ACM Press.

Barros, A., Dumas, M. and ter Hofstede, A. (2005) Service Interaction Patterns: Towards a
Reference Framework for Service-based Business Process Interconnection. Technical
Report FIT-TR-2005-02 Faculty of Information Technology, QUT, Australia.

Batista, T., Joolia, A., and Coulson, G. (2005) Managing Dynamic Reconfiguration in
Component-based Systems. In Proceedings of the European Workshop on Software
Architectures Pisa, Italy,

BEA Systems, IBM, and Microsoft (2004) Web Services Coordination (WS-Coordination)
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf.

BEA Systems, IBM, Microsoft, SAP, AG, and Siebel Systems (2003) Business Process

230

Execution Language for Web Services (BEPL4WS)
http://ifr.sap.com/bpel4ws/index.html.

Beer, S. (1979) The heart of enterprise, Chichester Eng., New York: Wiley.

Beer, S. (1984) The Viable System Model: Its Provenance, Development, Methodology and
Pathology. Journal of the Operational Research Society vol 35, no 1, pp 7-25.

Beer, S. (1985) Diagnosing the system for organizations, Chichester West Sussex, New York:
Wiley.

Bertalanffy, L.v. (1968) General system theory : foundations, development, applications, Rev.
ed edn. New York : Braziller.

Beugnard, A., Jézéquel, J., Plouzeau, N. and Watkins, D. (1999) Making Components Contract
Aware. IEEE Computer vol 32, no 7, pp 38-45.

Bracciali, A., Brogi, A., and Canal, C. (2002) Dynamically Adapting the Behaviour of Software
Components. In Arbab, F. and Talcott, C., (Eds.) Proceedings 5th International
Conference on Coordination Models and Languages (Coordination'02) LNCS 2315
York, UK, Springer.

Bradbury, J.S. (2004) , Organizing Definitions and Formalisms of Dynamic Software
Architectures. Queen's University, Technical Report 2004-477,

Bradbury, J.S., Cordy, J.R., Dingel, J., and Wermelinger, M. (2004) A survey of self-
management in dynamic software architecture specifications. In Proceedings of the
1st ACM SIGSOFT workshop on Self-managed systems Newport Beach, California,

Bruneton, E., Coupaye, T., and Stefani, J.B. (2002) Recursive and Dynamic Software
Composition with Sharing. In Proceedings of the 7th International Workshop on
Component-Oriented Programming (WCOP02) Malaga, Spain,

Bäumer, D., Riehle, D., Siberski, W. and Wulf, M. (2000) Role Object. In: Harrison, N., Foote,
B. and Rohnert, H., (Eds.) Pattern languages of program design 4, pp 15-32.
Addison-Wesley

Cai, K., Cangussu, J.W., DeCarlo, R.A., and Mathur, A.P. (2004) An Overview of Software
Cybernetics. In Eleventh International Workshop on Software Technology and
Engineering Practice Amsterdan, The Netherlands, IEEE Computer Society.

Cangussu, J.W., Cooper, K., and Li, C. (2004) A Control Theory Based Framework for
Dynamic Adaptable Systems. In ACM Symposium on Applied Computing (SAC 2004)
Nicosia, Cyprus, ACM.

Chang, H. and Collet, P. (2005) Fine-grained Contract Negotiation for Hierarchical Software
Components. In Proceeding of 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, IEEE.

Cheng, S.-W., Garlan, D., and Schmerl, B.R. (2005) Making Self-Adaptation an Engineering
Reality. In Babaoglu et. al., (Ed.) Self-star Properties in Complex Information
Systems, Lecture Notes in Computer Science 3460 Bertinoro, Italy, Springer .

Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B., and Steenkiste, P. (2004) An Architecture
for Coordinating Multiple Self-Management Systems. In Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture (WICSA’04) Oslo, Norway,
Kluwer Academic Publishers.

Collet, P. (2001) Functional and Non-Functional Contracts Support for Component-Oriented
Programming. In First OOPSLA Workshop on Language Mechanisms for
Programming Software Components, OOPSLA'2001 Tampa Bay (Florida),

Collet, P., Rousseau, R., Coupaye, T., and Rivierre, N. (2005) A Contracting System for
Hierarchical Components. In SIGSOFT Symposium on Component-Based Software
Engineering (CBSE'05), LNCS 3489 St-Louis, Missouri, USA, Springer Verlag.

Colman, A. and Han, J. (2005a) Coordination Systems in Role-based Adaptive Software. In
Proceedings of the 7th International Conference on Coordination Models and
Languages (COORD 2005), LNCS 3454 Namur, Belgium, LNCS 3454.

 231

Colman, A. and Han, J. (2005b) On the autonomy of software entities and modes of
organisation. In Proceedings of the 1st International Workshop on Coordination and
Organisation (CoOrg 2005) Namur, Belgium,

Colman, A. and Han, J. (2005c) Operational management contracts for adaptive software
organisation. In Proceedings of the Australian Software Engineering Conference
(ASWEC 2005) Brisbane, Australia, IEEE.

Colman, A. and Han, J. (2005d) An organisational approach to building adaptive service-
oriented systems. In Zirpins, C., Ortiz, G., Lamerdorf, W. and Emmerich, W., (Eds.)
Proceeding of First International Workshop on Engineering Service
Compositions,WESC'05, in IBM Research Report RC23821 Amsterdam, The
Netherlands, Yorktown Heights: IBM Research Division: IBM.

Colman, A. and Han, J. (2006a) Adaptive service-oriented systems: an organisational approach.
International Journal of Computer Systems Science & Engineering vol 21, no 4, pp
235-246.

Colman, A. and Han, J. (2006b) Coordination Systems for Adaptive Software. Science of
Computer Programming, Elsevier (Forthcoming)

Colman, A. and Han, J. (2006c) Using Associations Aspects to Implement Organisational
Contracts. Electronic Notes in Theoretical Computer Science - Proceedings of the 1st
International Workshop on Coordination and Organisation (CoOrg 2005) vol 150, no
3, pp 37-53.

Colman, A., Pham, L.D., Han, J., and Schneider, J.-G. (2006) Adaptive Application-Specific
Middleware. In Proceedings of the Middleware for Service Oriented Computing
Workshop (MW4SOC) Melbourne, Australia, ACM.

Coulson, G., Blair, G.S., and Grace, P. (2004) On the Performance of Reflective Systems
Software. In Proc. International Workshop on Middleware Performance (MP 2004)
Phoenix, Arizona,

Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., and Ueyama, J. (2004) OpenCOM v2: A
Component Model for Building Systems Software. In Proceedings of IASTED
Software Engineering and Applications (SEA'04) Cambridge, MA,

Cuesta, C.E., de la Fuente, P., and Barrio-Solárzano, M. (2001) Dynamic coordination
architecture through the use of reflection. In Proceedings of the 2001 ACM
Symposium on Applied Computing SAC '01 Las Vegas, Nevada, United States, New
York, NY: ACM Press.

de Lemos, R. and Fiadeiro, J.L. (2002) An architectural support for self-adaptive software for
treating faults. In Proceedings of the 1st ACM SIGSOFT Workshop on Self-Healing
Systems (WOSS'02) Charleston, SC, USA,

de Miguel, M.A. (2003) QoS modeling language for high quality systems. In Proceedings of
the Eighth International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2003).

Dennett, D.C. (1987) The Intentional Stance, Cambridge, Mass: MIT Press.

Dignum, V. (2003) A Model for Organizational Interaction, based onAgents, founded in Logic.
PhD thesis, University of Utrecht.

Diotalevi, F. (2004) Contract Enforcement with AOP, http://www-
106.ibm.com/developerworks/library/j-ceaop/, Last accessed: Sep 2004

Duce, D.A. (1991) Workshop on User Interface Management Systems and Environments: User
interface management and design proceedings of the Workshop on User Interface
Management Systems and Environments, Lisbon, Portugal, June 4-6, 1990, Berlin,
New York: Springer-Verlag.

Eclipse Foundation (2004) AspectJ, http://eclipse.org/aspectj/, Last accessed: Oct 2004

Emmerich, W. (2000) Engineering distributed objects, Chichester : John Wiley & Sons.

Ferber, J. and Gutknecht, O. (1998) A Meta-Model for the Analysis and Design of

232

Organizations in Multi-Agent Systems. In 3rd International Conference on Multi-
Agent Systems (ICMAS 1998) Paris, France, IEEE Computer Society.

Fogel, D.B. and IEEE Neural Networks Council (1995) Evolutionary computation toward a
new philosophy of machine intelligence, New York: IEEE Press.

The Foundation for Intelligent Physical Agents (2002) FIPA Communicative Act Library
Specification, http://www.fipa.org/specs/fipa00037/, Last accessed: Aug 2004

Fowler, M. (1997) Dealing with Roles. In Proceedings of the 4th Annual Conference on the
Pattern Languages of Programs Monticello, Illinois, USA, Technical Report #wucs-
97-34, Dept. of Computer Science, Washington University.

Gamma, E., Vlissides, J., Johnson, R. and Helm, R. (1995) Design patterns elements of
reusable object-oriented software, Reading, Mass: Addison-Wesley.

Ganek, A.G. and Corbi, T.A. (2003) The dawning of the autonomic computing era. IBM
Systems Journal vol 42, no 1, pp 5-18.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. and Steenkiste, P. (2004) Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer vol 37,
no 10, pp 46-54.

Garlan, D., Poladian, V., Schmerl, B., and Sousa, J.P. (2004) Task-based self-adaptation. In
Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems Newport
Beach, California, ACM Press .

Garlan, D. and Shaw, M. (1993) An Introduction to Software Architecture. In: Ambriola, V.
and Tortora, G., (Eds.) Advances in Software Engineering and Knowledge
Engineering, pp 1-39. Singapore: World Scientific Publishing Company

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. (2002) The Belief-Desire-
Intention Model of Agency. In Proc. 5th Inter. Workshop on Intelligent Agents V :
Agent Theories, Architectures, and Languages (ATAL-98)

Georgiadis, I., Magee, J., and Kramer, J. (2002) Self-organising software architectures for
distributed systems. In Proceedings of the First Workshop on Self-Healing Systems
WOSS '02 Charleston, South Carolina, New York, NY: ACM Press .

Georgiadis, I. (2002) Self-Organising Distributed Component Software Architectures. PhD
Thesis, Department of Computing, Imperial College of Science, Technology and
Medicine, University of London.

Global Grid Forum (2004) Web Services Agreement Specification (WS-Agreement)
www.gridforum.org/Meetings/GGF11/ Documents/draft-ggf-graap-agreement.pdf .

Gorlick, M.M. and Razouk, R.R. (1991) Using weaves for software construction and analysis.
In Proceedings of the 13th International Conference on Software Engineering Austin,
Texas, Los Alamitos, CA: Computer Society Press.

Hallsteinsen, S., Floch, J., and Stav, E. (2005) A Middleware Centric Approach to Building
Self-Adapting Systems. In Gschwind, T. and Mascolo, C., (Eds.) Prceedings of the
4th International Workshop Software Engineering and Middleware (SEM 2004),
LNCS 3437 Linz, Austria, Springer-Verlag GmbH.

Han, J. (1998) A Comprehensive Interface Definition Framework for Software Components. In
Proceedings of 1998 Asia-Pacific Software Engineering Conference (APSEC'98)
Taipei, Taiwan, IEEE Computer Society Press.

Han, J. and Jin, Y. (2005) Runtime Validation of Behavioural Contracts for Component
Software. In Proceedings of the 5th International Conference on Quality Software
(QSIC2005) Melbourne, Australia, September 2005, IEEE Computer Society Press .

Hannemann, J. and Kiczales, G. (2002) Design Pattern Implementation in Java and AspectJ. In
Proceedings of the 17th Annual ACM conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA'02) ACM.

Helm, R., Holland, I., and Gangopadhyay, D. (1990) Contracts: specifying behavioral
compositions in object-oriented systems . In Proceedings of the European conference

 233

on object-oriented programming on Object-oriented programming systems, languages,
and applications ECOOP '90 Ottawa, Canada , Publisher ACM Press New York,
NY, USA .

Herring, C. and Kaplan, S. (2000) The Viable System Architecture. In Thirty-Fourth Hawaii
International Conference on System Sciences (HICSS-34) Maui, Hawaii,

Herring, C.E. (2002) Viable software: The Intelligent control paradigm for adaptable and
adaptive architecture, PhD Thesis. University of Queensland.

Herrmann, S. (2002) Object Teams: Improving Modularity for Crosscutting Collaboarations. In
Net.Object Days 2002 Erfurt, Germany,

Herrmann, S. (2005) Programming with Roles in ObjectTeams/Java. In AAAI Fall Symposium,
Roles, an interdisciplinary perspective Arlington, Virginia, AAAI Press.

Heylighen, F. and Joslyn, C. (2001) Cybernetics and Second-order Cybernetics. In:
Anonymous Encyclopedia of physical science and technology, 3 edn.

Hillman, J. and Warren, I. (2004) An Open Framework for Dynamic Reconfiguration. In
Proceedings of 26th International Conference on Software Engineering (ICSE'04)

Holland, J.H. (1992) Adaptation in natural and artificial systems : an introductory analysis
with applications to biology, control, and artificial intelligence, Cambridge, Mass. :
MIT press.

Holland, J.H. (1998) Emergence : from chaos to order, Oxford : Oxford University Press.

Horvitz, E. (1999) Principles of Mixed-Initiative User Interfaces. In Proceeedings of ACM
SIGCHI Conference on Human Factors in Computing Systems (CHI 99) Pittsburgh,
Pennsylvania, USA, 159-166p.

Huang, A.-C. and Steenkiste, P. (2004) Building Self-configuring Services Using Service-
specific Knowledge. In Proceeding of 13th IEEE Symposium on High-Performance
Distributed Computing (HPDC’04) Honolulu, Hawaii, IEEE.

Huang, A.-C. and Steenkiste, P. (2005) Building Self-adapting Services Using Service-specific
Knowledge. In Fourteenth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-14) Research Triangle Park, NC,

IBM Corporation (2003) Web Service Level Agreement (WSLA) Language Specification wsla-
2003/01/28. IBM Corporation http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf.

Jackson, D. (2002) Alloy: a lightweight object modelling notation. ACM Transactions on
Software Eng. Methodologies. vol 11, no 2, pp 256-290.

Jin, Y. and Han, J. (2005) Runtime Validation of Behavioural Contracts for Component
Software. In Proceedings of the 5th International Conference on Quality Software
(QSIC2005) Melbourne, Australia, IEEE Computer Society Press.

Juan, T., Pearce, A. and Sterling, L. (2002) ROADMAP: extending the Gaia methodology for
complex open systems. Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, Bologna, Italy, ACM pp 3-10.

KAOS (2003) Goal-Driven Requirements Engineering: the KAOS Approach,
http://www.info.ucl.ac.be/research/projects/AVL/ReqEng.html, Last accessed: Feb
2004

Keeney, R.L. and Raiffa, H. (1976) Decisions with multiple objectives : preferences and value
tradeoffs, New York : Wiley.

Kendall, E.A. (1999a) Role model designs and implementations with aspect-oriented
programming. Proceedings of the ACM Conference on Object-Oriented Systems,
Languages, and Applications, Denver, CO pp 353-369.

Kendall, E.A. (1999b) Role Modelling for Agents System Analysis, Design and
Implementation. In Proceeding of the 1st International Symposium on Agent Systems
and Applications 204-218p. Palm Springs (CA): IEEE CS Press.

234

Kephart, J.O. and Chess, D.M. (2003) The Vision of Autonomic Computing. Computer, IEEE
Computer Society Press Los Alamitos, CA, USA vol 36, no 1, pp 41-50.

Khan, K. and Han, J. (2005) Deriving Systems Level Security Properties of Component Based
Composite Systems . In In Proceedings of the 2005 Australian Software Engineering
Conference (ASWEC'05) Brisbane, Australia, IEEE Computer Society Press.

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C.V., Maeda, C. and Mendhekar,
A. (1997) Aspect-oriented programming. In: Anonymous European Conference on
Object-Oriented Programming: ECOOP'97--object-oriented programming 11th
European Conference, Jyväskylä, Finland, June 9-13, Springer-Verlag

Knight, J.C., Heimbigner, D., Wolf, A., Carzaniga, A., Hill, J., Devanbu, P., and Gertz, M.
(2002) The Willow Architecture: Comprehensive Survivability for Large-Scale
Distributed Applications. In Intrusion Tolerance Workshop, DSN-2002, The
International Conference on Dependable Systems and Networks, Washington DC,

Kokar, M.M., Baclawski, K. and Eracar, Y.A. (1999) Control Theory-Based Foundations of
Self-Controlling Software. IEEE Intelligent Systems vol 14, no 3, pp 37-45.

Kristensen, B.B. and Osterbye, K. (1996) Roles: Conceptual Abstraction Theory & Practical
Language Issues. Special Issue of Theory and Practice of Object Systems (TAPOS) on
Subjectivity in Object-Oriented Systems vol 2, no 3, pp 143-160.

Kristensen, B.B. (1996) Object-oriented modeling with roles. In Proceedings of the 2nd
International Conference on Object-oriented Information Systems (OOIS'95) Dublin,
Ireland, Springer-Verlag.

Lee, J.S. and Bae, D.H. (2002) An enhanced role model for alleviating the role-binding
anomaly. Software: Practice and Experience vol 32, pp 1317-1344.

Li, Z., Han, J. and Jin, Y. (2005) Pattern-Based Specification and Validation of Web Services
Interaction Properties. Lecture Notes in Computer Science, Springer vol 3826: pp 73-
86.

Lieberherr, K.J. (1996) Adaptive object-oriented software the Demeter Method with
propagation patterns, Boston: PWS Pub. Co.

Ludwig, H., Dan, A., and Kearney, R. (2004) Cremona: an architecture and library for creation
and monitoring of WS-agreements . In Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC'04) New York, NY, USA,

Magee, J. and Kramer, J. (1996) Dynamic structure in software architectures. In D. Garlan,
(Ed.) Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering San Francisco, California, New York, NY: ACM Press .

Maturana, H.R. and Varela, F.J. (1980) Autopoiesis and cognition the realization of the living,
Dordrecht, Holland, Boston: D. Reidel Pub. Co.

Maturana, H.R. and Varela, F.J. (1987) The tree of knowledge the biological roots of human
understanding, 1st ed edn. Boston: New Science Library. Distributed in the United
State by Random House.

McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.C. (2004) Composing Adaptive
Software. IEEE Computer vol 37, no 7, pp 56-64.

Medvidovic, N., Oreizy, P., Robbins, J.E., and Taylor, R.N. (1996) Using object-oriented typing
to support architectural design in the C2 style. In D. Garlan, (Ed.) Proceedings of the
4th ACM SIGSOFT Symposium on Foundations of Software Engineering San
Francisco, California, New York, NY: ACM Press.

Medvidovic, N. and Taylor, R.N. (2000) A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering, vol 26, no 1, pp 70-93.

Meyer, B. (1988) Object-oriented software construction, New York: Prentice-Hall.

Mintzberg, H. (1983) Structure in fives: designing effective organizations, Englewood-Cliffs,
New Jersey: Prentice Hall.

 235

Monroe, R. (2000) Capturing Software Architecture Design Expertise With Armani ,
Capturing Software Architecture Design Expertise With Armani. CMU School of
Computer Science Technical Report CMU-CS-98-163,

Mukhija, A. and Glinz, M. (2003) CASA - A Contract-based Adaptive Software Architecture
Framework. In Proceedings of the 3rd IEEE Workshop on Applications and Services
in Wireless Networks (ASWN 2003) Berne, Switzerland,

Mukhija, A. and Glinz, M. (2005a) The CASA Approach to Autonomic Applications. In
Proceedings of the 5th IEEE Workshop on Applications and Services in Wireless
Networks (ASWN 2005) Paris, France,

Mukhija, A. and Glinz, M. (2005b) Runtime Adaptation of Applications through Dynamic
Recomposition of Components. In Proceedings of the 18th International Conference
on Architecture of Computing Systems (ARCS 2005) Innsbruck, Austria,

Nagel, E. (1961) The structure of science problems in the logic of scientific explanation, New
York: Harcourt, Brace & World.

Norman, D. (1984) Stages and levels in human-machine interaction. International Journal of
Man-Machine Studies no 21, pp 365-375.

OASIS (2005) Web Services Distributed Management -Management of Web Services 1.0,
OASIS Standard, 9 March 2005 wsdm-mows-1.0http://docs.oasis-
open.org/wsdm/2004/12/cd-wsdm-mows-1.0.pdf.

Object Management Group (2004) UML 2.0 Superstructure (Final Adopted specification),
http://www.uml.org/#UML2.0, Last accessed: Oct 2004

Odell, J., Nodine, M. and Levy, R. (2005) A Metamodel for Agents, Roles, and Groups.
Agent-Oriented Software Engineering (AOSE) V

Odell, J., Parunak, H.V.D., Brueckner, S. and Fleischer, M. (2004) Temporal Aspects of
Dynamic Role Assignment. Agent-Oriented Software Engineering (AOSE) IV,
Lecture Notes on Computer Science , Springer, Berlin 2935 201-213.

Odell, J., Parunak, H.V.D., Brueckner, S. and Sauter, J. (2003) Changing Roles: Dynamic Role
Assignment. Journal of Object Technology, ETH Zurich vol 2, no 5, pp 77-86.

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D.S. and Wolf, A.L. (1999) An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems vol 14, no 3, pp 54-62.

Parnas, D.L. (1972) On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM vol 15, no 12, pp 1053-1058.

Parunak, V. and Brueckner, S. (2003) Engineering Self-Organising Applications. Proceedings
of the Second International Joint Conference on Autonomous Agents and Multiagent
System (AAMAS'03) pp 1-54.

Pham, L.D., Colman, A. and Han, J. (2005) The implementation of message synchonisation,
queuing and allocation in the ROAD framework Technical Report SUT.CeCSES-
TR009, Faculty of ICT, Swinburne University of Technology.

Plasil, F. and Visnovsky, S. (2002) Behavior Protocols for Software Components. IEEE
Transactions on Software Engineering , IEEE Press vol 28, no 11, pp 1056-1076.

Poladian, V., Sousa, J.P., Garlan, D., and Shaw, M. (2004) Dynamic Configuration of Resource-
Aware Services. In Proceedings of the 26th International Conference on Software
Engineering (ICSE 2004) Edinburgh, UK,

Rajan, H. and Sullivan, K. (2003) Eos:instance-level aspects for integrated system design.
ACM SIGSOFT Software Engineering Notes vol 28 , no 5 , pp 297-306.

Rasmussen, J., Pejtersen, A.M. and Goodstein, L.P. (1994) Cognitive systems engineering,
New York: Wiley.

Reenskaug, T. (1996) Working with Objects : the OOram Software Engineering Method,
Manning Publications Co.

236

Riehle, D. (1998) Bureaucracy. In: Martin, R., Riehle, D. and Buschmann, F., (Eds.) Pattern
Languages of Program Design 3, pp 163-186. Reading, Massachusetts: Addison-
Wesley

Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., and Komiya, S. (2004) Association
Aspects. In Proceedings of the Aspect-Oriented Software Development '04 Lancaster
U.K, ACM.

Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S. and Komiya, S. (2006) Design and
Implementation of an Aspect Instantiation Mechanism . Transactions on Aspect-
Oriented Software Development, LNCS vol 3880, pp 259-292.

Searle, J.R. (1983) Intentionality, an essay in the philosophy of mind, Cambridge
Cambridgeshire, New York: Cambridge University Press.

Shannon, C.E. and Weaver, W. (1949) The mathematical theory of communication, Urbana Ill.
: University of Illinois Press.

Shaw, M. (1995) Beyond objects: A software design paradigm based on process control. ACM
Software Engineering Notes vol 20, no 1, pp 27-39.

Shaw, M. and Garlan, D. (1996) Software architecture perspectives on an emerging discipline,
Upper Saddle River, N.J: Prentice Hall.

Shoham, Y. and Tennenholtz, M. (1995) On social laws for artificial agent societies: off-line
design. Artificial Intelligence vol 73, no 1-2, pp 231-235.

Sichman, J., Dignum, V. and Castelfranchi, C. (2005) Agent Organizations: a Concise
Overview. Special Issue in Agent Organizations of Journal of the Brazilian Computer
Society vol 11, no 1, pp 3-8.

Simon, H.A. (1957) Administrative behavior : a study of decision making process in
administrative organization, 2nd ed. with a new introd edn. New York : Macmillan.

Simon, H.A. (1969) The sciences of the artificial, Cambridge: M.I.T. Press.

Skene, J., Lamanna, D.D., and Emmerich, W. (2004) Precise Service Level Agreements. In
26th International Conference on Software Engineering (ICSE'04)

Skyttner, L. (2001) General systems theory ideas & applications, Singapore, River Edge, N.J:
World Scientific.

Sousa, J.P. and Garlan, D. (2003) The Aura Software Architecture: an Infrastructure for
Ubiquitous Computing. The Aura Software Architecture: an Infrastructure for
Ubiquitous Computing. CMU-CS-03-183, School of Computer Science, Carnegie
Mellon University. www.cs.cmu.edu/~jpsousa/research/CMU-CS-03-183.pdf .

Steimann, F. (2000) On the representation of roles in object-oriented and conceptual modelling.
Data and Knowledge Engineering no 35, pp 83-106.

Steimann, F. (2005) The Role Data Model Revisited. In AAAI Fall Symposium, Roles, an
interdisciplinary perspective Arlington, Virginia, AAAI Press.

Sullivan, J.W. and Tyler, S.W. (1991) Intelligent user interfaces, New York, N.Y, Reading,
Mass: ACM Press. Addison-Wesley Pub. Co.

Sullivan, K., Gu, L., and Cai, Y. (2002) Non-modularity in aspect-oriented languages:
integration as a crosscutting concern for AspectJ. In Proceedings of the 1st
international conference on Aspect-oriented software development, AOSD 02
Enschede, The Netherlands, ACM Press.

Sykes, J.A. (2003) Negotiating early reuse of components: a model-based analysis. In: Favre,
L., (Ed.) UML and the unified process, pp 66-69. Hershey, PA, USA: Idea Group
Publishing

Szyperski, C. (1997) Component software : beyond object-oriented programming, New York :,
Harlow, England ;, Reading, Mass. : ACM Press ; Addison-Wesley.

Taylor, M.M. (1988) Layered Protocols for computer-human dialogue. I: Principles.
International Journal of Man-Machine Studies no 28, pp 175-218.

 237

Tosic, V. and Pagurek, B. (2005) On comprehensive contractual descriptions of Web services.
In Proceedings of IEEE International Conference on e-Technology, e-Commerce and
e-Service. EEE '05.

van Lamsweerde, A. (2001) Goal-Oriented Requirements Engineering: A Guided Tour.
Proceedings. RE'01 - International Joint Conference on Requirements Engineering,
Toronto, IEEE, pp 249-263.

van Lamsweerde, A. (2003) From System Goals to Software Architecture. In: Bernardo, M. and
Inveradi, P., (Eds.) Formal Methods for Software Architecture - LNCS 2804,
Springer-Verlag

W3C (2004) WS Choreography Model Overview WD-ws-chor-model-
20040324http://www.w3.org/TR/2004/WD-ws-chor-model.

W3C (2005) Web Services Description Language (WSDL) Version 2.0 Primer WD-wsdl20-
primer-20050510 http://www.w3.org/TR/wsdl20-primer/.

Waewsawangwong, P. (2004) A Constraint Architectural Description Approach to Self-
Organising Component-Based Software Systems. In 26th International Conference on
Software Engineering (ICSE'04) Edinburgh, United Kingdom, IEEE Computer
Society.

Walsh, W.E., Tesauro, G., Kephart, J.O., and Das, R. (2004) Utility Functions in Autonomic
Systems. In 1st International Conference on Autonomic Computing (ICAC 2004)
New York, NY, USA, IEEE Computer Society.

Wermelinger, M. (1998) Towards a chemical model for software architecture reconfiguration.
In Proceedings of the 4th International Conference on Configurable Distributed
Systems IEEE Computer Society Press.

Wermelinger, M., Fiadeiro, J.L., Andrade, L., Koutsoukos, G., and Gouveia, J. (2001)
Separation of Core Concerns: Computation, Coordination, and Configuration. In
Proceedings of OOPSLA 2001 Workshop on Advanced Separation of Concerns in
Object-Oriented Systems Tampa Bay, FL,

Wiener, N. (1961) Cybernetics, or, Control and communication in the animal and the machine,
2nd ed edn. New York : M.I.T. Press.

Wirfs-Brock, R. and McKean, A. (2002) Object Design: Roles, Responsibilities, and
Collaborations, Addison Wesley.

Wooldridge, M.J. and Jennings, N.R. (2000) The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems vol 3, no May -
June, pp 285-315.

Yellin, D.M. and Strom, R.E. (1997) Protocol specifications and component adaptors . ACM
Transactions on Programming Languages and Systems (TOPLAS), ACM Press New
York, NY, USA vol 19, no 2, pp 292-333.

Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. (2000) Organisational Abstractions for
the Analysis and Design of Multi-Agent Systems. In Workshop on Agent-oriented
Software Engineering ICSE 2000

Zambonelli, F., Jennings, N.R. and Wooldridge, M. (2003) Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Methodology
(TOSEM) vol 12, no 3, pp 317-370.

Zhou, Z. and McKinley, P.K. (2005) COCA: A Contract-Based Infrastructure for Collaborative
Quality-of-Service Adaptation. Technical Report MSU-CSE-05-20, Computer
Science and Engineering, Michigan State University, East Lansing, Michigan.

Zirpins, C., Lamersdorf , W., and Baier, T. (2004) Flexible coordination of service interaction
patterns . In Proceedings of the 2nd International Conference on Service Oriented
Computing (ICSOC'04) New York, NY, USA , ACM Press.

.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Part I Adaptation and Organisation
	1 Introduction
	2 Adaptive Organisations
	3 Adaptive Software Architectures

	Part II The ROAD Meta-model
	4 Role-Oriented Adaptive Design
	5 Roles and Players
	6 Contracts between Roles
	7 Self-managed Composites and the Management System

	Part III The ROAD Framework and Discussion
	8 Framework Implementation
	9 A Test Application
	10 A Design Case Study in Service Oriented Computing
	11 Analysis and Discussion
	12 Conclusion

	Test Harness Code and Output
	Author Index
	References
	01front.pdf.pdf
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Part I Adaptation and Organisation
	1 Introduction
	2 Adaptive Organisations
	3 Adaptive Software Architectures

	Part II The ROAD Meta-model
	4 Role-Oriented Adaptive Design
	5 Roles and Players
	6 Contracts between Roles
	7 Self-managed Composites and the Management System

	Part III The ROAD Framework and Discussion
	8 Framework Implementation
	9 A Test Application
	10 A Design Case Study in Service Oriented Computing
	11 Analysis and Discussion
	12 Conclusion

	Test Harness Code and Output
	Author Index
	References

